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SOME STRIP CONTRIBUTIONS TO TRANSDUCER DESIGN AND ANALYSIS 

1.0  INTRODUCTION 

Certain developments in the Sonar Transducer Reliability Improvement Program (STRIP) have 
applications beyond those already used and documented in the STRIP progress reports. One such 
development was the Simplified Guidance Model (SGM) for k33 mode longitudinal vibrator transducer 
elements [1]. For example, the SGM can be used to deduce, understand, and explain certain transducer 
design aids and design techniques which then may be used as tools for reducing the cost and time required 
to complete a 33-mode longitudinal vibrator projector element and array design. There may not be many 
more totally new large budget k33 mode transducer array design developments, but there probably will be 
major design modifications of present fleet arrays of these types of elements. There will also be important 
problems to solve concerning reproducibility and reliability of present fleet arrays of k33 mode transducers. 
Thus, there exists a continuing need to be able to effectively and efficiently modify existing sonar 
transducer array designs. 

At the same time, there is a need to efficiently and effectively educate new sonar transducer array 
engineers. It is important not to lose the knowledge, skill, and insight base that resides with the engineers 
who are presently able to solve problems and supervise the procurement of reliable near replicas of 
present k33 mode transducers. Without a proper transfer of design and analysis skills, the Navy might find 
itself in the position of "reinventing the wheel" in this area. Much of the expertise developed by the 
present transducer array engineers was gained by studying performance predictions made using elaborate 
computer programs. The SGM may be augmented in such a way that, using only paper and pencil, an 
engineer may obtain much of the same insight and information as was gained from the elaborate, 
expensive computer-aided calculations. The same augmented SGM could be easily programmed on a 
personal computer as an inexpensive teaching aid. In fact, Appendix B presents such computer program 
prediction results for three selected examples taken from Sec. 5 and concludes that: 

a. The corresponding derivations and design insights of Sec. 5 were fully consistent with subject 
computer predictions. This provided a strong indication that there were no significant errors in 
the associated "pencil and paper" derivations of Sec. 5. 

b. The predictions provided additional clarity and understanding concerning the "design aid insights" 
as originally developed from the "pencil and paper" derivations of Sec. 5. 

The goal of this document is to augment and apply the SGM in such a way as to be useful in 
satisfying all of the above indicated future needs. Some specific objectives are: 1) Augment the SGM 
so that it may be used as an educational tool to help new transducer array engineers acquire some of the 
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Carson and Waiden 

subject knowledge, skills, and insight; and 2) Apply the augmented SGM to derive and illustrate some 
of the pertinent design and analysis aids. 

In Sec. 2, a basis is established for developing these design and analysis tools by providing one 
specific illustration of a systematic General Design Approach (GDA). In Sec. 3, one aspect of the GDA; 
namely, the Trial Design Generation Scheme (TDGS), is further clarified with a specific example. Then, 
in the context of this GDA, the design and analysis aid tools are developed and explained. In Sec. 4, we 
consider the design options available to the engineer when all of the transducer design parameters except 
those for the ceramic stack assembly and a fiberglass tuning ring are fixed. Finally, in Sec. 5, the SGM 
is augmented to include the entire transducer and applied to derive and illustrate certain design and 
analysis aids. To keep the train of thought in the discussion fairly well focused, many of the derivations 
were placed in an Appendix A. Also, Appendix B presents computer program prediction results for three 
selected examples taken from Sec. 5. 



Transducer Design and Analysis 

2.0  GENERAL DESIGN APPROACH 

The General Design Approach (GDA) is a three-step iterative procedure for projector transducer 
element and array design as suggested by Fig. 2-1. 

STEP #1 
FORMULATE 

CONSTRAINTS AND 
GOODNESS CRITERIA 

RETURN TO STEP #1 
OR STEP #2 IF STEP #3 

SO INDICATES 

STEP #2 
APPLY A 

TRIAL DESIGN 
GENERATION SCHEME 

STEP #3 
PREDICT ARRAY 
PERFORMANCE 

USING COMPOSITE 
MATHEMATICAL MODEL 

Fig. 2-1 — The general design approach is a three step iterative procedure for projector transducer element and array design 

In Step 1 of Fig. 2-1 the design engineer attempts to specify all important design constraints and 
goodness (desired performance) criteria for the array, including those for the transducer element. Step 1 
is neither simple nor unalterable. For example, each iteration through these three steps provides new 
understanding, and, thus, often indicates a need for further modification of the array design constraints 
and goodness criteria. In Step 2, the Trial Design Generation Scheme (TDGS) is developed. The TDGS 
is a systematic, practical scheme for developing trial transducer array element designs which reflect and 
satisfy the array constraints and goodness criteria of Step 1. The TDGS may include various 
approximations which facilitate the rapid, if not yet complete, attainment of specific transducer element 
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performance characteristics. The STRIP has developed a number of tools which aid in the rapid 
identification of an appropriate design. The STRIP design development procedures are further described 
in Sees. 3, 4, and 5. 

In Step 3 of Fig. 2-1, the Composite Mathematical Model (CMM) predicts the complete array 
performance based on the anticipated characteristics of the driver amplifiers, transducer elements, array 
baffles, and the acoustic medium (including array interactions). Of course, the expected characteristics 
of the individual transducer elements are detenuined by the TDGS. The CMM detenuines if the 
transducer element design developed in the TDGS of Step 2 yields the required array performance. Step 
3 is the fundamental verification of the entire design procedure. Even a trial design produced with 
arbitrary justification would be a candidate for consideration if, when analyzed in an adequate CMM, the 
predicted anay performance was satisfactory. 

Typically, the results of Step 3 will indicate that further adjustment of the design of the transducer 
element, or relaxation or adjustment of the anay performance criteria, is necessary to achieve convergence 
of the predicted anay perfonnance to the desired anay perfomiance characteristics. The anow closing 
the loop from Step 3 to Step I in Fig. 2-1 serves as a reminder that the design procedure is iterative. 

As an illustration of how the GDA is implemented, consider the design problem of what was known 
as the Confonnal/Planar Anay Program or, more concisely, the C/P Program. This program required an 
anay design consisting of about 3000 individually driven transducer elements. The anay was required 
to operate at all steerings from endfire to broadside. The purpose of a projector anay is to produce a 
specified sound field. In the C/P Program, a transducer radiating face velocity distribution for the 3000 
anay elements was chosen which, according to the radiation theory, would produce the specified sound 
field. This distribution was named the "Desired Velocity Distribution" and was designated as one 
constraint in Step 1. This velocity distribution was then used in the calculations of the TDGS of Step 2. 
Then, in Step 3, the actual velocity distribution of the collective transducer radiation faces was predicted 
based on the CMM. In general, such a predicted distribution will be different from the original desired 
distribution. The process is repeated until the difference reaches an acceptable value or until it is 
impractical to consider further refinements. At that point, the predicted velocity distribution could be used 
as the final desired velocity distribution constraint in Step 1 requiring a subsequent iteration through the 
three steps to optimize the design relative to this new constraint. 

In the next section, the application of the TDGS is further illustrated using this example of the C/P 
Program. 
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3.0  AN EXAMPLE OF A TRIAL DESIGN GENERATION SCHEME 

A Trial Design Generation Scheme (TDGS) may vary widely depending on such things as the 
designer's focus, the specific problem, constraints imposed by the application, and resources available. 
To clarify the concept of a TDGS, this section presents one specific example of a TDGS which was 
found to be useful in the C/P Program and other applications. 

For the conformal/planar array, consisting of a large number of individually driven transducer 
elements, some form of velocity control was a necessity. Velocity control is simply any provision to 
insure that the desired velocity distribution for the array of transducer radiating faces will be at least 
approximately achieved. The TDGS had to supply a means for accommodating the velocity control 
constraint imposed in Step 1 of the GDA. 

"Current velocity control" was chosen in the C/P Program as the means to achieve velocity control. 
By current velocity control is meant: 1) the magnitude and phase of the input current to each transducer 
element is controlled; and 2) the transducer element is designed to make the velocity of its radiating face 
proportional to the input current nearly independently of the radiation impedance on the face. Note that 
control of the current implies design constraints for the electronic amplifiers to be used to individually 
drive transducer elements. 

Current Velocity Control 

It can be shown that the following equations hold (Note: Quantities such as E;, L, Zr, and VH are 
discussed in more detail in Sees. 4 and 5). The input electrical voltage E( and current I; are related to the 
velocity of the radiating face VH by the following equations: 

Ei = a(Zr + Zec)VH (3.1) 

and 

/,. = b(Zr + Zic)VH, (3.2) 

where Zr is the radiation impedance as seen by the radiating face, Zec is the mechanical impedance of the 
transducer configured with a short circuit across the main terminals, and Zic is the mechanical impedance 
of the transducer configured with an open circuit. For a given frequency, the quantities a, b, Zec, and Zic 

are constants for a given element design including any electrical components which are part of the design. 
The equations hold for any element in the array. However, it is assumed that a one-dimensional model 
is adequate to describe the transducer elements of interest. In a given problem, one may find that a one- 
dimensional model is not sufficient, especially for the CMM required in Step 3 of the GDA. 

The input electrical impedance Zt is simply E; divided by I( yielding 

Z  = !i =  °Zr +Zgc (3.3) 
'      /.      bZ  + Z 

For current velocity control, one considers only transducer element designs which satisfy the following 
conditions: 
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K\»\zr\. <3-4) 

When this condition is satisfied, Eq. (3.2) reduces to: 

where it can be seen that the velocity is proportional to the input current and independent of the radiation 
impedance. 

When tested in the CMM, a TDGS based only on the constraint in Eq. (3.4) was not sufficient. Such 
a TDGS produced designs with the undesirable characteristic that the range of variation in input 
impedance Z; was much greater than the corresponding variations in the radiation impedance Zr. In order 
to produce designs with variations in Z; about the same as those of Zp the designer added the constraint: 

\2J « \Z,\ . (3.5) 

In the resulting TDGS, both Eqs. (3.4) and (3.5) hold; therefore, Eq. (3.3) reduces to: 

Zi 
( a \ 

bZ„ 
Z . (3.3a) 

Thus, Zj was forced to be proportional to Zr, and the variations in electrical input impedance are made 
approximately the same as the variations in radiation impedance. 

The resulting improved TDGS was comprised of two parts: a single frequency TDGS, and a 
frequency band TDGS. The single frequency TDGS is obtained by utilizing the mathematical relations 
between the element parameters implied by applying conditions A, B, and C at some chosen frequency 

C°°' I      I Condition A:   Maximize |Zic| relative to Zr at co0. 

Condition B:   Minimize   | Zec | relative to Zr at <a0. 

Condition C:   Comply with all other chosen design constraints. 

Equation (3.2a) follows from condition A and is used for current velocity control.  Combining conditions 
A and B yields Eq. (3.3a), making Zj proportional to Zr.  It also follows from condition B that: 

Ei " a{ZrVH) =afr, (3.6) 

where the force on the radiating face, fr=Zr-VH.  Therefore, a consequence of condition B is that the input 
voltage is proportional to the force on the radiating face. 

A further consequence of conditions A and B is: 

ErI, - (abZic)frVH. (3.7) 



Transducer Design and Analysis 

Thus, the volt-amp product E^ is proportional to the force-velocity product frVH. In fact, when 
compliance with all other design constraints (Condition C) happens to lead to a transducer design with 
small internal losses, the volt-amp product EJj is approximately equal to the force velocity product frVH. 
That is, 

E?t-frVB. (3.7a) 

For this single frequency TDGS, it can be shown that the minimum value of | EJ; | should ordinarily 
occur at a frequency very near co0. Low I EJj | is a desirable feature with respect to amplifier constraints. 
It can also be shown that a minimum value of | E; | in Eq. (3.6) should occur near co0. In the typical 
design configuration which employs current velocity control, the input voltage Ef is also the voltage 
applied to the active ferroelectric ceramic material. A low | E; | is highly desirable since it is important 
not to exceed the electrical field limit of the ceramic driver. 

Figure 3-1 shows the I Zio | of four radically different transducer element designs which will be used 
to illustrate some of the features of this specific TDGS. These designs were produced by the single 
frequency TDGS for the C/P Program constraints. Transducer elements 1, 2, and 3 were constrained to 
have nearly the same | Zjc | and, thus, the same degree of current velocity control over the frequency band 
as shown in curves 1, 2, and 3. However, they are radically different from each other in that elements 
1 through 3 weigh approximately 75, 50, and 40 lbs, respectively. Transducer design #4 represented by 
curve #4 weighs the same as #3 (40 lbs), but design #4 is radically different from the first three. 
Specifically, I Zjc | for designs I, 2, and 3 equals 35 M.Q at co0, but element 4 has a I Zic | of only 15 MQ 
at ©0. 

Figure 3-2 illustrates some of the characteristics of the EJj product for transducer designs produced 
by the single frequency TDGS. The same four radically different designs associated with Fig. 3-1 are 
used. Notice that at co0 all transducer elements produce essentially the same I E^ | product. A computer 
program searched out the greatest | frVH | in the 3000-element array for 21 different beam steerings and 
used this extreme to plot these four curves.  Notice, also, that the absolute minimum of I EJ; | is near <x»0. 

The frequency band part of this specific TDGS consisted largely of using simplified predictive models 
and/or the computer implemented CMM predictive model to find those designs from the single frequency 
TDGS which best preserved the desirable features over the whole frequency band of interest. For 
example, if the only goodness criteria were to keep | EJ; | as small as possible, element #4 in Fig. 3-2 
represented by curve #4 would be chosen. However, | Zic| is low for design #4 and it might be too low 
for current velocity control in a given array problem. If that were the case, one would then consider 
elements like 1, 2, and 3 all of which have the same larger I Z-J . Of elements 1, 2, and 3, one would 
pick element #1, represented by curve #1, as the lowest IEJIJ over the band. However, element #1 
weighs 75 lbs and, if a further design constraint were that no element could weigh more than 50 lbs., one 
would then pick element #2, represented by curve #2, as having the lower | Ejlj |  consistent with the I. weight and I Zic | constraints. 

The example of employing current velocity control in this specific TDGS was presented primarily to 
clarify the meaning of a TDGS in the context of the GDA. There are other options which could have 
been exercised in this scheme to achieve slightly different results. For instance, consider the following: 
Condition A (maximize I Zic | at co0) is often achieved by choosing the proper value for an inductor placed 
in parallel with the Ceramic Stack Assembly (CSA). Condition B (minimize | Zec | at co0) is for practical 
purposes equivalent to adjusting the transducer element design such that the motion (of the radiating face) 
per volt (across the CSA) in air is maximized at co0). If, after completing the single frequency TDGS, the 
designer did not like the resulting average input impedance phase angle occurring over the array, this 
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phase angle could be adjusted by a slight alteration of the single frequency TDGS. For example, 
condition B could be made to occur at a slightly different frequency than co0, or instead, condition A could 
be similarly modified. 

In summary, all quantities and constraints must be considered in the overall array design procedure, 
not just lEjIjI, |Zicl, and element weight. This is made feasible using modern high-speed digital 
computers which make it possible to examine enough design variations to insure that a reasonably 
optimum array configuration has been identified relative to the chosen constraints and goodness criteria. 
However, the cost and time required to complete a comprehensive design and analysis effort can be 
significantly reduced by using improved simplified predictive models in the TDGS. Further examples of 
simplified predictive models and associated design and analysis aids are presented in Sees. 4 and 5. 
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Fig. 3-1 — The magnitude of the mechanical input impedance Zic of four radically different transducer element designs 
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Fig. 3-2 — Characteristics of the EJj product for four different transducer designs produced by the single frequency TDGS 



Transducer Design and Analysis 11 

4.0 CERAMIC STACK ASSEMBLY DESIGN AND ANALYSIS AIDS 

4.1 Ceramic Stack Assembly/Fiberglass Tuning Ring Transfer Matrix 

The performance of a transducer array and the transducer elements in that array is dependent upon 
the detenuination of the design of various design parameters. Limitations are placed on each component 
or subassembly in Step 1 of the General Design Approach (GDA). Listed below are some of the basic 
array and transducer element design parameters that must be considered. 

Table 4.1   -  Basic Array and Transducer Element Design Parameters 

1. Array geometry and construction. 

2. Transducer radiating face geometry and placement of these faces in the array. 

3. Desired array velocity and distribution for the radiating faces. 

4. Headmass assembly design. 

5. Tailmass assembly design. 

6. Electrical transformer and tuning inductor design. 

7. Watertight integrity design. 

8. Modular driver amplifier design.  Note:   It is assumed that each transducer element is driven by 
one of the driver amplifiers. 

9. Ceramic stack assembly (CSA) and fiberglass tuning ring (FTR) design [see Eqs. (4.1) and 
(4.1a)]. 

In Sec. 4 it is assumed that all of the transducer design parameters associated with items 1 through 
8 are temporarily fixed. Section 4 considers only the effects of modifying the design parameters of the 
CSA and/or FTR (item 9). 

The SGM [1] was specifically tailored to allow direct, economical, and efficient determination of the 
effects of adjustments in the piezoelectric CSA on 33-mode longitudinal vibrators. The original 
application of the SGM was to determine adjustments in the CSA (in combination with an FTR) which 
could be used to solve the piezoelectric ceramic reproducibility problem [2] for longitudinal vibrators. 
The design and analysis applications as they apply to the CSA are examined in this section. 

The theory of the SGM will not be redeveloped here, since it has been presented in detail in Ref. 1. 
However, we will take from Ref. 1 a number of important relations which are then used to develop insight 
for generating trial designs for CSA and FTR components of the transducer element. A simple step-by- 
step method will be presented to help produce a near optimum design for the CSA and FTR relative to 
the constraints and goodness criteria of a given transducer design problem. Some of the other design 
parameters will be explicitly considered in Sec. 5. 
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One of the important relations which can be derived from the SGM is the transfer matrix equation 
[Eq. (4.1)]. The transfer matrix equation follows from the simplified equivalent circuit diagram of the 
CSA shown in Fig. 4-1, given the following assumptions: 

1. The lengths of the individual ceramic rings (Ic) are short compared to a wavelength. 

2. The ceramic stack length (L) is short compared to a wavelength. 

3. The primary resonance frequency of the unloaded ceramic stack is much higher than the operating 
frequency band of the transducer. 

4. The compliance of the stress rod is much greater than the compliance of the ceramic stack. 

The transfer matrix equation relates the voltage (E) and current (I) applied to the CSA with a certain force 
(F) and a certain velocity of the radiating face (V) as indicated below: 

/  \ 1 
E 

= 

I 

\  i 
\ 

1 

Nd, 
[CF + Q 

1 

33 m Nd, 

\ I   \ 

F 
•33 

1(0 
{ #33 * 

<cp + c) 
#33 * c       / 

V 

\   ) 

(4.1) 

where:  E is the voltage across the electrical terminals of the CSA, 
I is the corresponding electric current flowing in the CSA, 
d33 relates electric field to displacement, 
g33 relates charge density to displacement, 
N is the number of ceramic rings used to construct the CSA, 
lc is the length of any one of the N ceramic rings, 
Ac is the electroded area of any one of the two ends of each of the N rings, 
CF is the compliance of the FTR, 
C is the compliance of the CSA in the open-circuit configuration, 
C is the compliance of the CSA in the short-circuited configuration, 
F is a certain force (see discussion which follows), and 
V is a certain velocity (see discussion which follows). 

As is summarized in Sec. 4.2.1 and explained in detail in Ref. 1, when (as in all subsections of Sec. 
4) the head and tail assemblies are assumed to be fixed, the force (F) and velocity (V) on the right side 
of Eq. (4.1) are proportional to the force FH and velocity VH interface of the fiberglass washer and the 
transducer radiating head assembly. In fact, given the assumptions of the SGM one finds that the constant 
of proportionality relating F to FH is unit}'; that is, F = FH. 

The constant of proportionality relating V to VH depends only on the frequency, the nature of the head 
and tail assembly, and the acoustic loading on the radiating face [see Eq. (4.13)]. 
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Fig. 4-1 — Simplified equivalent circuit of the CSA with combined head and tail impedances 

Examination of Eq. (4.1) shows only two piezoelectric constants explicitly displayed; namely, d33 and 
g33. Actually, a set of three independent piezoelectric constants is required to characterize the CSA. The 
third piezoelectric constant [for matrix Eq. (4.1)] is contained in CSA compliances, C (the CSA short- 
circuit compliance) and C (the CSA open-circuit compliance). These compliances are defined as 
follows: 

E       1, E   L 
33  T (4.2a) 

and 

C   ~ S33N— - S33—-, w ~r ~ °33". 
Ac Ac 

(4.2b) 

where:  S33 relates displacement to force when the CSA electrical terminals are short circuited, 

S33 relates displacement to force when the CSA electrical terminals are open circuited, and 

L is the total length of the CSA such that, 

L = N I, (4.3) 

However, S33 and S33 are not independent and only one of them need be used.   They are related in the 
following way: 
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J33 ^33       #33^33 ' 
(4.4) 

In light of the dependence expressed in Eq. (4.4), d33, g33, and S33 can be chosen as the set of three 
independent piezoelectric constants to fully characterize the CSA. 

Using Eqs. (4.2) through (4.4), one can write 

C = C 
{ T\ 

KAC 
(g33<*33) • 

(4.5) 

Based on the above discussion, Eq. (4.1) can be re-expressed as follows to display the explicit dependence 
on the three chosen piezoelectric constants (d33, g33, S33): 

/   N 
1 

E 

I 

V  ) 
\ 

Nd ■33 
<v 

ico N 

833' 

,A33 

C„+ 7-(S33-«33^3) 

1 
iw Nd. 33 

N 

833' 

F 

V 

\   I 

(4.1a) 

Examination of Eqs. (4.1) and/or (4.1a) reveals the important fact that if any adjustments are made 
to the CSA and/or FTR (as reflected in the compliance CF of the FTR) such that the coefficients of the 
2x2 matrix remain the same, then the input/output performance of the adjusted transducer will be the 
same. The internal performance (such as electric field, mechanical strain, etc.) may be different, but all 
transducers with the same 2x2 matrix for Eq. (4.1) [or Eq. (4.1a)] will have the same externally 
measurable electro-acoustic performance. The clcctroacouslic performance characteristics of most general 
interest are 

1. Source level per volt. 

2. Source level per amp. 

3. Input electrical impedance. 

4. Open-circuit receive response. 

5. Short-circuit receive response. 

For the purposes of Sec. 4, any set of transducers which have the same coefficients in the transfer matrix 
will be said to have the same CSA/FTR transfer matrix. As noted above, these transducers will have 
identical characteristics with respect to the externally measurable quantities listed above. 
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4.2 Design Scenario 1 - Design Options Adjusting Only Ac and L (of CSA) but With L/Ac Ratio 
Fixed 

This Section uses the SGM to develop some insight concerning design options and procedures 
available for the special case using only adjustments (changes) in the value of Ac and L (electrode area 
and total length of the CSA) subject to the additional constraint of a fixed value for the L/Ac ratio. For 
convenience, this special case will be referred to as Design Scenario 1. 

As was emphasized in Sec. 3, any quantitative design calculations and predictions should be made 
using a good CMM. Therefore, in an actual application, the design engineer should have progressed far 
enough into a given iteration of the GDA to determine at least those Table 4.1 type parameters needed 
to perform corresponding Design Scenario 1 type calculations using the CMM. Please note, however, that 
during a given application of Design Scenario 1, all Table 4.1 type parameters are fixed except Ac and 
L. 

For Design Scenario 1 perhaps the most important observations are the following: (1) In the 
CSA/FTR matrix [Eq. (4.1a)], the parameters Ac and L always occur together as the ratio L/Ac; (2) Even 
though we are changing the values of design parameters Ac and L, the fact that we are maintaining a fixed 
value for L/Ac means that all Design Scenario 1 transducers have the same CSA/FTR transfer matrix and 
thus the same externally measurable electro-acoustic performance characteristics. Yet it is also true that 
the transducers included in Design Scenario 1 can vary radically. With small values of L and Ac, only 
a relatively small volume of ceramic material would be contained in the CSA, while large values of L and 
Ac the CSA would contain a relatively large volume of ceramic material. The size of the transducer 
would of course vary accordingly. 

In addition to physical size differences, there are several other variations accommodated by Design 
Scenario 1. The source level per volt applied to the ceramic is an externally measurable quantity and, 
therefore, is unaffected by changes permitted by Design Scenario 1. On the other hand, the source level 
per electric field would change as lc (the length of the ceramic rings) is changed. Thus, the source 
level/electric field will be different and adjustable among transducers included in Design Scenario 1. 
Similarly, the mechanical stress and strain in the CSA is adjustable among Design Scenario 1 transducers. 
Specific insight concerning how to make such design adjustments (e.g., using an appropriate option of the 
CMM) is developed next with the aid of the SGM. 

4.2.1   Adjusting the CSA Electric Field (z) by Adjusting L With Fixed L/Ac Ratio 

The theory of the SGM [1] shows that the force F and the velocity V are related as follows: 

F = ZV, (4-6) 

where the impedance Z is the parallel combination of the impedance of the head assembly and tail 
assembly given by Eq. (4.7). 

-       Z^T (4.7) 
ZH+ZT 

In Eq. (4.7), ZT is the impedance presented to the CSA by the tail assembly, and ZH denotes the 
impedance presented at the FTR interface by the combined impedance of the head assembly and the 
acoustic loading. 
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Using F = ZV, it follows from Eqs. (4.1) or (4.1a) that 

y mNd33 

E      1 +KO (CF+QZ 

and if one defines the electric field as s = E/lc, then, 

y zoo Nlcd33 

€        1 +KO (CP+QZ 

(4.8) 

(4.9) 

or equivalently, 

y zoo Ld: 33 

e       lna(Cp+QZ 
(4.9a) 

Since the CSA consists of N ceramic rings wired in parallel, E is the voltage applied to a single ceramic 
ring as well as the entire CSA. 

In a similar fashion, using F = ZV, it follows from Eqs. (4.1) or (4.1a) that 

V = 833K 1 

/        Ac     l+iu(CF+C)z' 
(4.10) 

Alternatively, using L = 1CN, this relationship can be expressed as 

V = Sy£ 1 
/      NAC  \nu{CF+C)z' 

(4.10a) 

In the development of the SGM, it is shown that the equivalent circuit for the longitudinal vibrator, 
Fig. 4.1, implies that 

VT 
^H^H (4.11) 

and 

Combining Eqs. (4.11) and (4.12) gives 

v = vH - VT. (4.12) 

V = V   - V 
(     Z„\ 
1+- (4.13) 

One important measure of performance is source level. Source level (not in decibels) is proportional 
to VH at each frequency, and the constant of proportionality depends only on the frequency, the nature 
of the head mass assembly, and the acoustic loading.   It, therefore, follows from Eq. (4.13) that V also 
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is proportional to source level, and the constant of proportionality does not depend on any of the quantities 
being allowed to change in the derivations presented (i.e., only CSA quantities and FTR quantities are 
allowed to vary here). 

Thus, when all parameters except those for the CSA and FTR are fixed, the quantities V/E and V/I 
are equivalent to source level/volt on the ceramic (source level/E) and source level/amp (source level/I) 
into the ceramic as measures of perfonuance. Thus, Eq. (4.8) shows explicitly why changing Ac and/or 
lc does not affect the source level/E of a given transducer design; the source level/E is not a function of 
either 10 or Ac. 

However, Eq. (4.9) shows that for fixed N (as in Design Scenario 1), the source level/electric field 
(source level/s) is a function of lc; as lc is increased, the source level for a given field (s) is also 
increased, In other words, the electric field required for a given source level can be reduced by increasing 
lc. Notice, as shown explicitly by Eq. (4.9a), that the source level/e is actually a function of the total 
length L of the CSA. In Design Scenario 1, since N is fixed and L = Nlc [Eq. (4.3)], the source level/s 
is also a function of lc. Later, in Design Scenario 3, where L is held fixed but both lc and N may vary 
consistent with Eq. (4.3), the source levcl/s docs not change even though lc is changed. 

In a similar fashion, Eq. (4.10a) shows why only the source level/I is not affected by changes in L 
and Ac as long as the ratio L/Ac is held constant (which is true for Design Scenario 1 but not Design 
Scenario 2). Equation (4.10) could be altered to show (hat the source level/current density relation would 
be affected by changing Ac even if L/Ac is held fixed. However, current density is usually not an 
important factor in transducers of the type being considered. 

4.2.2 Adjusting CSA Stress by Adjusting Ac With Fixed L/Ac Ratio 

In a manner similar to the discussion of source levcl/E and source level/e, the SGM may be used to 
"suggest" that mechanical stress in the CSA for a given source level can be reduced by increasing Ac and 
the mechanical strain in the CSA for a given source level can be reduced by increasing L. Thus, for 
Design Scenario 1, transducers, Ac and L can be increased so that L/Ac is fixed, but both stress and strain 
are reduced.  This insight is explored further in the following paragraphs. 

As is suggested by the SGM equivalent circuit diagrams of the longitudinal vibrator, given the 
approximations of the SGM, the forces at the various interfaces are equal; that is, FT = F0= FH, where FT 

is the force at the tail assembly to CSA interface, F0 is the force at the CSA to FTR interface, and FH is 
the force at the FTR to head assembly interface. Since FH = ZH VH and since ZH and the array velocity 
distribution are assumed fixed, one observes that in the SGM all these forces remain constant as one 
adjusts either Ac or L. Thus, since the average stress at each interface is the force divided by the area, 
one observes that as Ac is increased the average stress in the CSA (which is equal to FT/AC = F0/Ac = 
ZHVH/AC) is decreased. The statements about stress are tnie for any transducer for which the SGM holds 
and for fixed design parameters in the following: 

1. Array geometry and construction. 

2. Transducer radiating face geometry. 

3. Array velocity distribution for the radiating faces. 

4. Head mass assembly. 
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In Design Scenario 1, these conditions are met; therefore, this SGM-based discussion suggests that 
Ac may be varied to adjust the CSA stress levels. This SGM-based discussion spoke of average stress; 
but, in an actual design adjustment, an appropriate option of the CMM would consider the maximum 
stress in the CSA. 

For later use, notice that the above discussion implies that a minimum value exists for Ac, say A: 

such that the stress limits associated with the CSA are not exceeded.  Write this constraint as follows: 

nun 
c   ' 

Ac *AC 
(4.14) 

A similar constraint on Ac might be developed relative to charge density, but this constraint is not 
considered here. 

4.2.3  Adjusting CSA Strain by Adjusting L With L/Ac Ratio Fixed 

Subject to the approximations of the SGM, the "average strain" in the CSA is proportional to 
(V0 - VT)/L. 

Z„ + 
1 

m Cc 
VH- (4.1$) 

Using Eqs. (4.11) and (4.15), (V,-, - VT)/L may be expressed in terms of VH as is shown in Eq. (4.16). 

V   - V Y 0       rT 

zH 
+ 

ZT      m CF/ 

(4.16) 

For Design Scenario 1, all the quantities in the numerator of Eq. (4.16) are fixed; therefore, as L is 
increased, the average strain in the CSA decreases. This SGM-based discussion spoke of average strain; 
but, in an actual design adjustment, an appropriate option of the CMM would consider the maximum 
strain in the CSA. 

The above discussion implies that a minimum value exists for L, say Lmmx, such that the strain limits 
associated with the CSA are not exceeded. (These strain limits are also a function of the stress bias 
applied with the stress rod.)  For subsequent use, it is convenient to express this constraint in the form 

T   >   j minx (4.17) 

NOTE: In Sec. 4.3 another constraint is placed on the minimum value of L relative 
to the electric field limit and this minimum value is given the distinguishing 
svmbol Lm",c. 

4.3   Design Scenario 2 - CSA L/Ac Ratio Optimization 

In Sec. 4.2, the SGM was used to develop some insight concerning design options and procedures to 
determine (using the CMM) the "best choices" for the values for the CSA parameters Ac and L (with all 
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other design parameters held fixed) subject to the additional constraint of a fixed value for the CSA L/Ac 

ratio. In this section, the SGM is used to develop some insight concerning design options and procedures 
which may be used to determine (using the CMM) an optimum (or at least a practical optimum) value 
for the CSA L/Ac ratio; that is, how to determine (L/Ac)

opt. For convenience, this special case will be 
referred to as "Design Scenario 2." 

The general approach used below to develop insight relative to Design Scenario 2 is: 

1. The CSA/FTR compliance is "optimized" so as to result in a resonance frequency, fe, for V/e (or 
equivalently V/E) which minimizes the maximum value of the CSA electric field (e) required to 
achieve the specified array source level (Sec. 4.3.1). 

2. The "intrinsic frequency band width" of the transducer is adjusted to be as broad as practical so 
as to minimize the demands made on the power amplifier design (Sec. 4.3.2). 

As previously emphasized, any quantitative design calculations and predictions should be made using 
a good CMM. Therefore, in an actual application the design engineer should have progressed far enough 
into a given iteration of the GDA to determine at least those Table 4.1 type parameters needed (using the 
CMM) to perform corresponding Design Scenario 2 type calculations. For example, the maximum CSA 
electric field needed to achieve the specified source level needs to be known; this means the CMM must 
be asked to calculate the electric field for all frequencies in the band of interest, all positions in the array, 
and all electrical steering angles. Since electric field limits are crucial in a piezoelectric ceramic type 
transducer, examination of this array performance dala would show that there is a best location for the 
resonant frequency fe, where fe is defined as the frequency of maximum value for source level/s (source 
level for a given electrical field on the ceramic). 

As is explained below, during a given application of Design Scenario 2 all Table 4.1 type parameters 
are fixed except L/Ac and the compliance, C„ of the FTR. Of course, during application of Design 
Scenario 2 one may temporarily take the point of view that L/Ac and the FTR are fixed and apply the 
Design Scenario 1 type adjustments to Ac and L. 

For Design Scenario 2, the fact that we are not maintaining a fixed L/Ac ratio and/or FTR means that 
Design Scenario 2 transducers do not have the same CSA/FTR transfer matrix and, thus, do not have the 
same externally measurable electro-acoustic performance. 

PREVIEW AND OVERVIEW OF GUIDELINES FOR OPTIMIZING THE L/A. RATIO 

The SGM-based insight development (presented directly below) for Design Scenario 2 is a little 
tedious, but the resulting guidelines may be simply and easily summarized as follows: 

1. The L/Ac ratio is optimized by making it as large as practical. 

2. To be consistent with 1 above (large L/Ac ratio), the compliance (Cf) of the FTR should be made 
as small as practical; in some cases this means that the FTR may be eliminated. 

3. With the aid of the CMM the resonance frequency, fe, for V/e (or equivalently V/E) is adjusted 
to minimize the maximum value of the CSA electric field (e) (or equivalently E), required to 
achieve a given specified array source level. 
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While reading the following explanation of Design Scenario 2, it is suggested that the reader keep in 
mind the above three-point summary of the resulting guidelines. 

4.3.1   Optimizing e and E Over the Array by Adjusting the Resonance Frequency of V/s 

Equation (4.9a) (repeated below for convenience) is used as a starting point for explaining how to shift 
fe to optimize s and E over the array for the transmit frequency band of interest. 

V  = *" LJ33 (4.9a) 

e       1+MCF+QZ 

In this discussion, all of the transducer design parameters except the CSA and/or FTR design parameters 
(see Sec. 4) remain fixed. Thus, in Eq. (4.9a), Z is fixed. One observes in Eq. (4.9a) that for any given 
value of L and d33, the only way to change the frequency fe where the maximum value of V/s occurs is 
to adjust the value of the composite compliance CF + C. Let Ce be this composite compliance as in 
Eq. (4.18): 

Ce = Cp + C = CF + S*3±-. (4.18) 
Ac 

In Eq. (4.8), it does not matter whether the composite compliance Ce is changed by changing CF (changing 
the FTR) or changing C (changing the short circuit CSA compliance). Therefore, Ce may be iteratively 
changed in the array CMM and the predictions may be used to detenuine a best location for the resonant 
frequency fe, say f°J", for the array source lcvel/E and source level/s. Corresponding to ff will be the 
best choice for Ce, say Cf. For convenience, rewrite Eq. (4.8) as follows for the special case where 
Ce=  Cf: 

y ico Nd33 

E      Um{CT)Z 
(4.8a) 

Notice that for any given values for N and d33, the shape of the curve of a plot of V/E vs frequency is 
the same as the shape for another set of values for N and d33. However, the curve can be shifted up or 
down by increasing or decreasing N and/or d33. 

In a corresponding fashion, rewrite Eq. (4.9a) as 

y m Ld33 

e       l+iw(Oz 
(4.9b) 

Equation (4.9b) shows that there is some minimum value of L, say L m,ns required to give a high enough 
value of V/s to comply \vith the given field limit on s.   For future use write this condition as 

£   ^   £mke (4.19) 

Equation (4.19) insures that for the array source level requirements 

(4.20) 
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For later use, note the following: two lower bound conditions have now been placed on the minimum 
value of L, Lminx [Eq. (4.17)] and Lmim [Eq. (4.19)]. Let L"1"1 be the larger of these two lower bounds and 
write the resulting constraint on L as follows: 

L ± L™ . (4.21) 

The above results also imply another constraint involving L which can be seen as follows. Recall that 
C is given by Eq. (4.2a) (repeated here for convenience). 

/ T \ 

KAa 
S33. (4.2a) 

Using Eqs. (4.18) and (4.2a), and the known desired value for Ce; namely, C°pt, write the following 
equations: 

CF + C = C0/, (4.18a) 

C = Of - CF, (4.18b) 

and 

L_ 
A. ^(CT-CF). (4.22) 

^33 

Equation (4.22) is one of the two equations which will be used to develop insight concerning 
determination of the optimum value for the L/Ac ratio, that is, (L/Ac)

opt. The second equation [Eq. (4.5a)] 
is determined in the next subsection as a result of optimizing the bandwidth for the sake of the power 
amplifier. 

4.3.2   Optimizing Bandwidth for Sake of the Amplifier 

Although voltage E and electric field s are the important electrical limits for the transducer element, 
the modular amplifiers have both a voltage and a current limit (also an E I product limit). For simplicity, 
assume that any tuning inductor is placed in parallel with the transducer so that Ein and 8 have already 
been adjusted and optimized for all array conditions as explained in Sec. 4.3.1. The problem remaining 
is to adjust the transducer design so that Iin for frequencies not near fe remains as low in value as possible 
and, thus, assuring that the bandwidth over which the current limits of the amplifier are not exceeded will 
be as large as practical. 

The determination of the best value of L/Ac [subject to the constraint of Eq. (4.20)] and CF for 
keeping Iin low over as large a frequency band as practical involves the frequency dependence of the head 
assembly, tail assembly and the acoustic loading of the array. These other design variables will be 
included starting in Sec. 5, but for now these complications will be by-passed by making two temporary 
design aid postulates. Later, when the other design variables are explicitly considered, these temporary 
postulates will not be needed.  The two temporary design aid postulates are: 
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Design Aid Postulate 1 

The greater the separation (difference) between the resonance frequency fe for the maximum array source 
level/E (related to V/E) and the resonance frequency f: for the maximum array source level/I (related to 
V/I), the greater the bandwidth over which the current limit of the amplifier will not be exceeded. 

Comparing the denominator of Eq. (4.8) for V/E with the denominator of Eq. (4.10) for V/I suggests 
the second postulate. 

Design Aid Postulate 2 

The difference between fe and f; can be made as large as possible (that is, postulate 1 can be satisfied) 
by making the difference between (CF + C) and (CF + C) as large as possible. 

The degree of validity and usefulness of these two design aid postulates may be examined in later 
sections where the nature of the acoustic loading, head assembly, and tail assemblies are combined with 
that of the CSA and FTR. In any given case the designer can easily check the validity by applying the 
computerized composite mathematical model for the transducer trial design in the array environment. 
These postulates have sometimes worked well in practice and for now are accepted as valid trial design 
generation aids. 

Postulate 2 (and, thus, postulate 1) can be applied using the following form of Eq. (4.5): 

(CF + O -(CF + C>) = j-($M. (4.5a) 

In Eq. (4.5a), with all other ceramic stack assembly parameters (Table 4.1) fixed, the only adjustment 
allowed is in L/Ac. Equation (4.5a) shows (as required by postulate 2) (CF + C) can be made as 
different as possible from (CF + C) by making L/Ac as large as possible. 

The other relevant equation involving L/Ac is Eq. (4.22) which is repeated for convenience. 

= —E-(cT-CF). (4.22) L 

c ^33 

Equation (4.22) shows that L/Ac can be made as large as possible by making CF = 0 (no FTR). 

Therefore, the optimum value [however, also see Eqs. (4.22b) and (4.23c)] of L/Ac is given by 

/     \opt       copt 

KA0 

£_ (4.22a) 

SE ' °33 

Recall that C°pt is the composite compliance needed to optimally locate fe, the V/E resonance frequency. 

These last observations can be made more directly by using Eq. (4.22) in Eq. (4.5a) to yield: 
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(CF + O - (CF * C) = *^2.[C? - Cp)t (4.23) 
O33 

or more simply, 

(C -C;) = ^!(cr -CF). (4.23a) 
33 

Equation (4.23) shows directly that for a given choice for g33, d33, and S33 (which are temporarily 
assumed to be fixed), that the difference in the composite compliance (CF + C) and (CF + C) can be made 
as great as possible (to satisfy postulate 2) by making CF = 0. 

Equation (4.23a) is shown simply to emphasize the fact that making C as different as possible from 
C is equivalent to making (CF + C) as different as possible from (CF + C). This is really what is being 
accomplished by applying postulate 2. 

4.3.2.1   Retention of a Minimum FTR Compliance 

In practice, for many cases it is recommend that a minimum compliance FTR be retained in order to 
make the transducer reproducible on a production basis [2]. If for practical purposes a minimum FTR 
compliance CF

m is retained, then the equation for (L/Ac)
opt  becomes 

( L\0P< 

KAO 

= (C -Cf)~. (4.22b) 

For this condition, the difference in the two composite compliances is given by 

(CF  +  Q   -  (CF  +  C)   =  ^3 lccpt  _  cmin\ t (423h) 

33 

4.3.2.2  Introduction of Coupling Coefficient K33 

For later use note, relative to Eqs. (4.23) and (4.23a). that an often tabulated piezoelectric ceramic 
quantity called coupling coefficient K33 may be defined as 

4 = ^i . (4.24) 
S33 

Using this expression for K33, Eq. (4.23) may be written as 
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(CF + Q- (CF + C) = 4(cr - CF). (4-23<0 

A large value for ceramic coupling coefficient, K33 is, in general, considered "good." In this regard, 
please note from Eq. (4.23c) that the larger K33 the greater (according to design aid postulates 1 and 2) 
the bandwidth over which the current limit of the modular amplifiers will not be exceeded. 

4.3.3    Sub-optimum L/Ac 

Thus far, Sec. 4.3 has provided insight concerning determination of (L/Ac)
opt, and Sec. 4.2 provided 

insight concerning determination of specific values for L and Ac. Consider now the case where, for 
practical reasons, one cannot use (L/Ac)

opt in the design (e.g., a transducer length constraint), but must use 
a sub-optimal ratio L/Ac < (L/Ac)

opt. In conjunction with Eq. (4.21) it was pointed out that some 
minimum, Lmin, ceramic stack length exists to satisfy both the electric field and strain limits. Suppose Lmin 

is achievable, but the corresponding minimum allowable area A™in [Eq. (4.14)] is such that Lmi7A™in < 
(L/Ac)

opt. A solution would be to make L > L""". However, suppose the transducer length constraint is 
such that a maximum length of the CSA. say Lma\ exists and Lmax > Lmin, but even using this maximum 
length the subject ratio is sub-optimal; that is, L",i,x/A™n < (L/Ac)

opt. 

For this sub-optimal case one may proceed as follows. One wishes to retain C°pt as the value of the 
composite compliance in order to retain the optimization relative to s and E discussed in Sec. 4.3.1 [Eqs. 
(4.8a) and (4.9b)]. From Eq. (4.22) one notes that in order to retain C°pt if the ratio L/Ac is reduced 
below its maximum (i.e., below its optimum) value, then the FTR compliance, Cf, must be increased in 
value. Applying this procedure to this sub-optimal case, the performance relative to the velocity/s and 
velocity/E on the CSA using the Lma7A™n is the same as for a CSA using (L/Ac)op'. For the case being 
considered, since L > Lmin, Eq. (4.19) applied to Eq. (4.9b) ensures that the electric field s is less than 
or equal to the maximum field smax [Eq. (4.20)]. However, the demands on the amplifier current and volt 
amp product requirements are greater. One can say that with L/Ac < (L/Ac)

opt, the bandwidth has been 
reduced over which a given amplifier design could drive the array. To increase the bandwidth using L/A0 

< (L/Ac)
opt, one would have to design a larger capacity power amplifier. 

4.4  Design Scenario 3 - Design Options Adjusting N and Ic (fixed L) 

This section uses the SGM to develop some insight concerning design options and procedures 
available for the special case where the only changes allowed are adjustments in the value of N and lc 

(number of ceramic rings and length of a ceramic ring) subject to the additional constraint of Eq. (4.3) 
(L = Nlc) with a fixed value for L. For convenience this special case will be referred to as "Design 
Scenario 3." 

4.4.1  Main Application for Design Scenario 3 

Reduction (to acceptable values) of the required voltage E on the electrical wiring of the CSA is the 
main application for Design Scenario 3. Equation (4.8) indicates that, as N is increased there is a decrease 
in the voltage E required to achieve a given velocity V and, thus, the corresponding desired source level. 
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4.4.1.1   Things that Change in Design Scenario 3 

In addition to the change just described ("improvement" of V/E and the source level/volt), V/I changes 
[Eq. (4.10a)] and the CSA/FTR transfer matrix changes [Eq. (4.1a)]. In regard to these last two changes, 
please note the following: 

1. As N is changed the ratio V/I changes in the opposite direction of V/E; if V/E is increased, then 
V/I is decreased and visa versa. 

2. Since the CSA/FTR transfer matrix changes as N is changed in Design Scenario 3, the 
corresponding externally measurable performance will also change. However, all such Design 
Scenario 3 transducers can be made to have the same CSA/FTR transfer matrix by adding an 
electrical transformer across the CSA electrical terminals. The turns ratio of this transformer can 
be selected to compensate for the change in N (see, for example, page 14 of Ref. 1). 

4.4.1.2  Things That Do Not Change in Design Scenario 3 

In Design Scenario 3 all transducer performance characteristics are fixed except for the three items 
indicated in Sec. 4.4.1.1. However, for definitencss it is useful to list some of these items that do not 
change. 

1. V/E [Eq. (4.9a)] and source level/s do not change. 

2. The mechanical stress (Sec. 4.2.2) and strain (Sec. 4.2.3) do not change. 

3. The L/Ac ratio does not change. 

4.5  Design Scenario 4 - Design Options Adjusting only CSA Piezoelectric Ceramic Parameters 

In this section, it is no longer assumed that the piezoelectric parameters of the CSA are being held 
fixed. Instead, this section uses the SGM to develop some insight concerning design options when 
changes are allowed in the chosen set of three independent piezoelectric ceramic parameters (e.g., d33, g33, 
and S33) with all other transducer design parameters held fixed. For convenience, this special case will 
be referred to as Design Scenario 4. 

Return first to Eq. (4.23) which shows that the bandwidth over which the amplifier can drive the array 
(see design aid postulates 1 and 2) can be increased by increasing the product g33d33/S33. As noted in Sec. 
4.3.2, Eqs. (4.24) and (4.23c) show that this last observation is equivalent to saying that increasing the 
CSA coupling coefficient K33 will increase this bandwidth. 

Examination of Eq. (4.8a) shows that increasing d33 increases the source level/E. In other words, 
increasing d33 decreases the voltage E on the CSA needed to achieve a given source level. Similarly, 
examination of Eq. (4.9a) shows that increasing d33 improves the source level/s; that is, increasing d33 

decreases the electric field on the CSA required to achieve a given source level. Analogous statements 
can be made about g33 and the source level/I. 

If one increases g33 and/or d33, as observed above, then the relative location of the resonance 
frequencies for source level/E and source level/I will be changed consistent with the above observation 
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concerning an increase in bandwidth due to an increase in the coupling coefficient K33. If the S33 CSA 
parameter is held fixed, the resonance frequency fe remains fixed and the resonance frequency f; will be 
changed as d33 and/or g33 is changed. This can be seen by examination of Eqs. (4.18a), (4.2a), (4.2b), and 
(4.23a) (CF and L/Ac are not allowed to change in Design Scenario 3). Furthermore, note that the 
compliance, C, is fixed [Eq. (4.2a)] and compliance C changes [Eq. (4.23a)] as d33 and/or g„ is changed. 

Although only the projector array problem is being considered, such an array is often used as the 
receiver array. It is useful to note (by reciprocity) that the open-circuit receive response is increased by 
increasing g33 and the short-circuit receive response is be increased by increasing d33. 

4.5.1  Replacing g33 With zT
33 (and CT) 

For many purposes in projector-type transducer designs, it is useful to replace g33 with e33 (see, for 
example, Refs. 1 and 2 concerning piezoelectric ceramic reproducibility), using d33, s33, and S33 as the 
set of independent material parameters.   One reason is that e33 is easily measurable because 

CT - A/33Jlc (4.25) 

and CT (the low-frequency capacitance of one ceramic ring) is easily measurable. 

The main discussion of this change from g33 to s33 occurs in Sec. 5; however, as one illustration, K33 

will now be rewritten in terms of s33 using Eq. (4.26). 

T 

Using Eq. (4.26) in Eq. (4.24) gives 

S33 = <yeh ■ (4-26) 

*33 =(^3)2/4^. <4-27> 

Recall that a large value for K33 is desirable and note that the smaller s33 the larger K33. Notice also from 
Eq. (4.25) that the smaller s33 the smaller the low frequency capacitance, CT. Thus, one can say that the 
smaller the value of low-frequency capacitance the better from the point-of-view of desiring a large 
coupling coefficient, K33. 

4.5.2  Summary for Design Scenario 4 

The above discussion indicates why, consistent with other considerations (such as high drive stability, 
etc.), the projector designer will choose a high value for d33, and a low value for s33 (or equivalently a 
high value for g33) and for a high value of S33. 
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5.0  COMPOSITE TRANSDUCER DESIGN AND ANALYSIS AIDS 

An array of acoustically interacting and complicated transducer elements can only be designed 
adequately with the help of computer aided design analysis. In cases where these costly and time- 
consuming computer-aided design calculations have been performed, certain design trends and design 
techniques were suggested by examination of the volumes of computer-generated graphs. As was 
indicated in the introduction (Sec. 1), the SGM may be augmented with simple models in such away that, 
using only paper and pencil, an engineer may derive much of the same knowledge, skill, and insight as 
was gained from the elaborate, expensive computer-aided calculations. In fact, in some cases, more 
insight is gained from such a paper and pencil exercise. As was promised, the augmented SGM is also 
applied to derive and illustrate some of the pertinent design and analysis aids. Appendix B presents 
computer program prediction results for three selected examples taken from Sec. 5. As will be pointed 
out below, the three selected examples presented in Appendix B are associated respectively with Eqs. 
(5.34), (5.79), and (5.10) (see Sees. 5.2.2.1.2, 5.2.2.5, and 5.2.2.6.2.1.2, respectively). 

The augmented SGM provides qualitative insight which helps to understand the performance obtained 
or obtainable from specific designs. The augmented SGM can guide the design engineer quickly to an 
approximate solution to his design problem — without having to perform extensive computer-aided 
analysis. No claim is made that the augmented SGM can replace computer aided analysis. However, it 
can provide knowledge, skill, and insight which will significantly reduce the time and cost of completing 
the final design and analysis calculations. As was emphasized in Sec. 3, any quantitative design 
calculations and predictions should be made using a good CMM. 

In Sec. 4, it was shown that the SGM could be used to detennine transducer design aids for the case 
where only the CSA and FTR design parameters were assumed to be explicitly displayed and available 
for manipulation. All the other transducer design parameters were held fixed and not explicitly available 
for consideration. In this section, simple models for the head assembly, tail assembly, and radiation 
loading are selected and used in conjunction with the SGM representations of the CSA and FTR models. 

5.1   The Radiation Model:   Simplification of the Head and Tail Assemblies 

In this simplified representation, the head and tail assemblies are represented by mass-like devices. 
Thus, the impedance ZT, looking into the tail assembly, is represented as 

ZT = mmT, (5-l) 

where mT is the mass of the tail assembly. The impedance for the head assembly in the case where there 
is no applied radiation loading (e.g., the transducer operating in air), is given by 

ZJJ - i(x)ITlH    (no radiation loading) , (5«2) 

where mH is the mass of the head assembly. The tail representation [Eq. (5.1)] is quite realistic for a large 
class of longitudinal vibrators. The head representation [Eq. (5.2)] is fairly representative except where 
the head is thin enough to have significant flexing. For most cases, except where flexing head is a 
concern, these two equations provide an estimation of the impedances that correlates well with actual 
observations. 

When radiation loading is present, the impedance of the head assembly is given by 
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ZH = i<SiTnH + Zr    (with radiation loading) , (5.3) 

where Zr is the radiation impedance. Zr is a complex number as shown in Eq. (5.4), where R is the real 
part and iX is the imaginary part of Zr. In an array design problem, the radiation impedance (both R and 
X) for a given transducer element in the array is, in general, a function of many things such as the 
element position in the array, the electrical steering angles for the array and the velocity distribution in 
the array. 

Zr = R + iX. (5.4) 

For the design aid simplification purposes, it is assumed that this function can be represented by the 
following simple, artificial frequency-dependent, radiation impedance, Zr. In this representation, R and 
X are taken to have the following linear dependence on co: 

R = cor    and    X = ux, (5,s) 

where r and x are constants (not functions of co). Since we are interested in designing transducer elements 
to operate in an acoustically interactive array, we assume that this representation is useful for our purposes 
not only for the radiation loading for a single element operating alone, but also for the average or typical 
radiation loading for a single element operating in an array. This simple, artificial representation of Zr 

departs radically from any actual frequency dependence for radiation impedance. Therefore, there was 
great concern that use of this simplified Zr representation might lead to erroneous design insights. 
However, the results reported below using this selected simple Zr representation agree qualitatively with 
design insights obtained using very sophisticated radiation models and computer-aided calculations and 
graphs. 

With this simple model for Zr, the impedance looking into the head assembly with a radiation load 
applied is given by 

ZH =  ior +  Üo( mH + x)    (with radiation loading) . (5.6) 

Let m be defined as the effective mass of the head mass assembly with radiation loading present. 

m = mH + x. (5.7) 

Then the head assembly impedance ZH can be expressed as 

ZH  =  (Or  +  mm   =   (0   (r  +  im)     (with radiation loading) . (5.8) 

Equations (5.1) and (5.8) constitute our simplified model for the tail and head assembly impedances in 
the presence of an applied radiation loading. 

5.2 Analysis Without a Tuning Inductor 

These simple forms for ZT, Zr, and ZH were used in the SGM to derive numerous forms of the basic 
equations which in turn were analyzed to illustrate certain conclusions concerning design trend, design 
aids, and design and analysis techniques. This section presents the resulting model equations for the 
composite transducer without an added tuning inductor. The emphasis is on transducer designs which best 
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meet the electric field constraints of the piezoelectric ceramic rings.   Later, in Sec. 5.3, a parallel tuning 
inductor is included in the analysis of the composite transducer. 

Where possible, we attempt to show the derivations of these model equations. In some cases, the 
complete derivations were too lengthy to be included without interrupting the flow of the discussion. In 
those cases, a more complete derivation is presented in Appendix A. 

5.2.1   Basic Forms for E/VH and I/VH 

The initial form for the input voltage (E) to the CSA required to achieve a given velocity of the 
radiation loaded head device VH is given by (see Sec. A.l): 

1 
VH      i(x>Nd33, 

1 + -^ z 1 + mC, 
(   Z Z    \ 

\ZB   +  ZT, 
(5.9) 

Using the simplified forms for the head and tail mass impedances presented in Sec. 5.1, Eq. (5.9) can be 
rearranged (see Sec. A.2) into the following simpler form: 

1 

<X>Nd: 
-[rE0 - i(l - mE0)] (5.10) 

33 

The quantity E0 is defined by 

Eo =   co2C   - -L 0    \      e     mT 

(5.11) 

Recall that C„ was defined [Eq. (4.18)] as the sum of the compliances of the fiberglass spring and the 
ceramic stack where the CSA is in the short-circuited configuration. 

For many purposes, it is the magnitude of a complex quantity which is important.  The magnitude of 
E/VH may be written as 

H töNd, 
l— ^El + (1 - mE0f (5.12) 

'33 

For convenience, define B, as 

2 i-2 B, = r^El + (1 - mEf. (5.13) 

Then, rewrite Eq. (5.12) as 
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ttjväj3 
(5.14) 

A similar equation to the one above (derived in Sec. A.3) relates the input current to the CSA (I) and 
the velocity of the radiating face (VH). 

*H        #33 *c 

1 + s. 1 + mC, ,{ zHzT \ 
,z„ + ZT, 

(5.15) 

It can be simplified in the following way: 

'H #33 
Y   Kl   -mIo)+irIo}> (5.16) 

where the quantity I0 is defined as 

*o' (o2C. 
/ _ J_ 
e 

(5.17) 

The sum of the compliances of the fiberglass spring and the CSA in the open-circuited configuration is 
denoted by C^ [see also Eq. (4.2b) for C']. 

C'e -CP + C'-CF + s£± (5.18) 

Then, the magnitude of the complex quantity I/VH is given by 

V„ «331, 

/r2/; + (1 -ml/. (5.19) 

For convenience, define B, as 

B2 = r2I2
0 + (1 - mlf. (5.20) 

Then rewrite Eq. (5.18) as 

^33 \ 
JB2- (5.21) 

It is interesting to compare Eq. (5.14) for | E/VH | to Eq. (5.21) for | WH I. Notice that the quantities 
B, and B2 have exactly the same form for the frequency dependence.   The only difference is that B, 
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involves the short-circuit compliance Ce [see Eq. (5.11)], whereas B2 involves the open circuit compliance 
C'e [Eq. (5.17)].   All the frequency dependence for | I/VH |  is contained in B2.   On the other hand, note 
that | E/VH | has the multiplier 1/co.  Therefore, if one fully characterizes either B, or B2 as functions of 
variables such as mT, mH, and co, then one would know all about the frequency dependence of II/VH I 
and a great deal about I E/VH | within the limitations set by use of the simplified models (Sec. 5.1). 

5.2.2  Special Frequencies and Characteristics for E/VH, z/VH, and I/VH 

There exist special frequencies where B, and B2 become especially simple. Thus, the expressions for 
E/VH, e/VH (s is the electric field), and I/VH become especially simple. These special frequencies are 
useful for the development of design aids. In this section, we will consider the characteristics of E/VH, 
s/VH, and I/VH at these special frequencies. Some of the observations made here are not limited to 
situations where the simple radiation model is applicable; these more generally applicable observations 
will be pointed out as they are encountered. 

5.2.2.1   In-air Resonance Frequencies - com and con 

In this section, we will consider the characteristics of E/VH, s/VH, and I/VH in air for some special 
frequencies. Since the radiation impedance is effectively zero in air, the following observations are not 
a function of the simple radiation model. Let com be the frequency where the quantity I E/VH I is a 
minimum in air; that is, the in-air resonance frequency for | E/VH I . By setting r and x equal to zero (the 
idealized in-air condition), one derives from Eq. (5.12) the following expression: 

toNd, r ft ~ mHEof 
33 

(5.22) 

The minimum value of I E/VH I  in air occurs when the quantity 1 - mHE0 goes to zero.   Let Eom be 
the value of function E„ which satisfies that condition.   Then, 

m H 

(5.23) 

Using Eq. (5.23) in Eq. (5.11) gives an expression for the angular frequency com where the magnitude of 
E/VH is minimized. 

w„ 
1 (5.24) 

The corresponding equation to Eq. (5.22) for the in-air magnitude of I/VH is 

' H #33 

c
Tp -'VO)2- (5.25) 

The magnitude of I/VH is minimized when the quantity 1 - mHI0 goes to zero.   Let Iora be the value of 
function I. which satisfies that condition.  Then, 
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hm = ~ • (5.26) 
mH 

The in-air angular resonance frequency con for the quantity II/VHI is given by 

(5.27) 2 1 (l             l) 
W„  = 

< mH      mT) 

This resonant frequency with respect to current is also sometimes called the antiresonant frequency. 

Note that these results predict infinite in-air velocities at com and con. This unrealistic prediction occurs 
because in the SGM the losses in the CSA are assumed to be zero, and in the above assumed head and 
tail devices there are also no losses. In actual devices, there will be losses so that, although the velocities 
may be large, they are never infinite. 

5.2.2.1.1 Relation of the In-air Resonant Frequencies co„„ co„ to the Coupling Coefficient K33 - As 
was discussed in Sec. 4, transducer engineers are sometimes interested in a commonly tabulated quantity 
called the coupling coefficient, K33.   It was defined in Sec. 4 as 

„2    _   #33"33 tA -,A\ 
Ä33 — . (4.24) 

S33 

Recall that large values of K33 are associated with various goodness criteria. 

K33 can be related to com and con as follows (see Sec. A.4 for more detailed derivation). The ratio of 
Eqs. (5.24) and (5.27) forms an expression for cof/co". Since this quantity is squared, it must necessarily 
be greater than zero. 

-^ = -^>0. (5.28) 

This expression, plus the following three equations from other parts of this report: 

Ce°s£j-+CF, (4.18) 

Ce - *33 T + CF, (5.18) 

and 

533   =  S33   - #33^33 » (4*4) 

can be used to rewrite Eq. (5.28).   (See Sec. A.4.) 
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C0„ 

CO,, 

nE      L 
533 ~r + cE 

533 T~ 

> o 
+ cE 

(5.29) 

then 

*33<* 

> 0. 
33 

J33 1   + 
CPAC 

O33L 

(5.30) 

Thus, substitution of the definition of K33 will yield the desired relationship between the in-air resonant 
frequencies and the coupling coefficient. 

CO, 

CO. 

1 
>0. 

^ 

1 ~ -^33 

1 + 
CPAC 

033/^ 

(5.31) 

Limits can be placed on the value of the quantity under the radical sign by noticing that by definition CF, 
Ac, S33, and L are positive numbers. K33 is squared and, therefore, positive. In order for the inequality 
to be preserved in Eq. (5.31), it is necessary that 

0 < 1 - K; 
.2 <     1 
Si 

^33^ 

< 1 
(5.32) 

From examination of Eqs (5.31) and (5.32), it is clear that 

m n' 
(5.33) 

Recalling the definition of C, the CSA short-circuit compliance, 

033^ (4.2a) 

Equation (5.31) could be expressed as 
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<0„ 

W„ 

N 

1 - K- 33 

( 1   ) 

1 
I c) 

(5.31a) 

In conclusion, we can make the following observations about the relationship between K33 and the 
resonant frequencies. If K33 is increased, con/com increases. This last observation suggests that increasing 
con/com should be accepted as a goodness criteria (con/a>m is often used in discussions of the "effective 
coupling coefficient"). Note that decreasing CF also increases con/cora. If increasing K33 is accepted as a 
goodness criteria, then decreasing CF should also be accepted as a goodness criteria. This suggests that 
eliminating the fiberglass washer is good from the point of view of increasing the "effective coupling 
coefficient." Said another way, increasing CF decreases the effective coupling coefficient. Recall (Sec. 
4.3.2.1), however, that retention of a minimum FTR compliance was recommended to make the transducer 
reproducible on a production basis. 

5.2.2.1.2 In-Wetter Performance at co„ and co„, - If one examines the in-water performance at the in- 
air resonance frequency com, it is found that | E/VH | is proportional to the magnitude of the radiation 
impedance |Zr| and that the magnitude of the voltage |E| is proportional to the magnitude of the 
radiation force I Fr |.  These observations are independent of the fonn assumed for Zr. 

A derivation is presented in Sec. A.5 which shows that 

E 

«;A«33wff 
ftj (5.34) 

In Eq. (5.34), Zm is the value of the radiation impedance at co = com. The above relationship between 
the magnitude of E/VH and the magnitude of Znil was derived without making any assumptions about the 
form of the radiation impedance Zr. 

According to Eq. (5.34), if com is held fixed [e.g., by adjusting Ce and/or mT in Eq. (5.24)] then the 
bigger the head mass, mH, the better: that is, the bigger the head mass, the less voltage E required for 
a given velocity VH. Said another way, the bigger the head mass, the greater the source level for a given 
voltage E on the CSA. This result was at first suprising in that it seemed to violate experience gained 
using the sophisticated computerized models; namely, the idea that smaller head masses are always better. 
This point will be cleared up in Sees. 5.2.2.6 and 5.2.2.6.2.1 where it is shown that although a larger head 
mass improves the voltage to radiation velocity ratio, it also decreases a certain bandwidth flatness criteria. 
Thus, in this example, the simple model is not in disagreement with experience, but is, in fact, helping 
to provide further insight concerning observed trends. 

Partly because of this, at first "strange" example in which "bigger head masses were better," this 
example was chosen as the first candidate applications of the computer program SGM-A1 to be used to 
"test" and "explore" the paper and pencil derived design aids and insights of Sec. 5. The SGM-A1 
predictions are presented in Appendix B. Another reason for choosing this example as the first candidate 
application of the computer program SGM-A1 was because there was essentially no doubt that the above 
pencil and paper derivaton was correct and. thus, this example served to check the "new" computer 
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program, SGM-A1. The SGM-A1 predictions agreed with the above indicated pencil and paper 
derivation. In addition, the SGM-A1 predictions indicated that the pencil and paper example in which 
"bigger head masses were better" was not confined to some extremely narrow frequency band near com 

(more details are presented in Appendix B). 

For future purposes, it is useful to examine further the requirements of Eq. (5.24) in order to hold com 

fixed as mH is increased. Examination of Eq. (5.24) shows that one way to hold com fixed is to decrease 
mT as mH is increased; another way is to decrease Ce as mH is increased. According to Eq. (4.18), Ce = 
CF + C, so one way to decrease Ce is to decrease the compliance of the FTR, CF. Once CF is reduced to 
zero (no FTR), then Cc could only be reduced by reducing C. According to Eq. (4.2a), C = S^L/A,.; 
therefore, C could be reduced either by increasing the ceramic ring area Ac or reducing the length, L, of 
the CSA. Since reducing L would increase the electric field on the ceramic rings, one would prefer to 
increase Ac. Note that holding L fixed and increasing Ac would increase the volume of the ceramic 
material. Note also that none of the quantities mT, L, or Ac are contained in Eq. (5.34) so changing these 
quantities does not change I E/VH | at co = com. 

Equation (5.34) can be re-arranged to display the relationship of the drive voltage to the magnitude 
of the radiation force. 

I     rm H\ £L=M 
w<"er) = ~x • (5.35) I<O=G>„ 

<">*M*33»» 

Since the radiation force is given by Fr = VHZr 

K\ - \VH\  \Zr\, (5.36) 

we can see that 

l*L.„ *~->-   2
lFJ    ■ (5-37) 

(omNd33mH 

In Eq. (5.37), Fm is the value of Fr at co = com. Equation (5.37) shows that at co = com when the transducer 
is operating in water, the magnitude of the drive voltage |E| is proportional to the magnitude of the 
radiation force I Fr|. (A similar derivation can be conducted with E and Fr showing that E is proportional 
by a complex constant to Fr.) 

Analogous relationships can be derived for the in-water performance for operation at the in-air 
resonance frequency (co = con). These are derived in Sec. A.5. The resulting relationships are summarized 
below. 

— — \ZJ • <5'38) 
VH 833KU»^ 
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\I\   " 
^J 

833lc^nmH 
(5.38a) 

5.2.2.2  In-Water Phase Zero Crossing Frequency - coe0 (also Cö„0) 

Another special case of interest is the frequency, coe0, such that the phase angle between E and VH 

is zero. When the phase angle between E and VH is zero, the imaginary component of Eq. (5.10) goes 
to zero.  Let Eoa be the value of E0 when the phase angle is zero.  Then, 

m 
(5.39) 

From the definition of E0, [Eq. (5.11)], it can be seen that at the in-water phase zero crossing the angular 
frequency must be given by 

to eO 
11 1 -   +    

m m T) 

(5.40) 

At co = coe0, one obtains 

<»eONd33 

r 
m 

(5.41) 

Since in water m = mH + x and if x > 0 (sec below), one finds, as in the case of com, that for co = coe0 

bigger mH is better in the sense that less voltage E is required to achieve a given velocity VH. One reason 
for interest in coe0 is that if r is small enough, then the phase zero crossing frequency is not much different 
than the in-water resonance frequency, com, for the quantity | E/VH I . An expression will be derived for 
com, and it will be found that com is a much more complicated function of Ce, mH and mT than that for coe0 

given by Eq. (5.40).   For later purposes, also note that Eq. (5.40) may be written as 

co eO 

N 
i     i 

— + — 

m* m1 
mm, 

(5.42) 

In general, the effective mass contributed by the radiation loading is greater than zero (although for 
a given frequency within an array there may be positions of some elements where x < 0). For x > 0, note 
that 
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w
e0 K  <*m > 

(5.43) 

as shown by comparison of Eqs. (5.24) and (5.40). 

«, _L + _L 
Ce \mH + x m. 

CO eO- 
(5.44) 

Similar results hold for I/VH. In this case, there is a frequency, coi9(), such that the phase angle 
between I and VH is 90° (not 0° as in the case of E/VH). Note that for this case the real part of I/VH must 
be zero.   The corresponding equations for this case are shown as Eqs. (5.45), (5.46), (5.47), and (5.48). 

Referring back to Eq. (5.16), 

g33lc  m 
(5.45) 

and 

_1_ 
m 

(5.46) 

From the definition of I0 [Eq. (5.17)], it can be seen that 

CO 190 a 
i   i 

— + — 
m      m. 

(5.47) 

After comparing Eq. (5.47) to Eq. (5.27), one finds that 

co(.90< co„. (5.48) 

With some slight reinterpretation, the above results concerning coe0 and coi90 hold for a more general 
frequency dependence for Zr. 

For the simple frequency dependence assumed for Zr, one notes that 

^ 2 
CO i90 

CO eO a 
(5.49) 

Thus, the relation between coi90/we0 and coupling coefficient, K33, is the same as for con com. However, for 
a more general frequency dependence, this may not be true. 
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5.2.2.3  Velocity Control Frequencies - coev and colv 

Another pair of special frequencies of interest are called the "velocity control" frequencies. These 
frequencies are of interest because the applied voltage and the input current are proportional to the 
velocity of the radiating face and independent of the radiation impedance. Furthermore, it will later be 
shown (Sec. 5.3) that an inductor may be chosen to adjust one or the other of these velocity control 
frequencies to any selected value. 

The velocity control frequency for E/VH occurs where E0 in Eq. (5.12) is zero. 

Eov = 0. (5.50) 

The corresponding frequency is obtained by substituting the condition above into Eq. (5.11) and solving 
for the velocity control frequency coev. 

-> 1 
(5.51) 

CemT 

When the magnitude of E/VH is evaluated at coev, we obtain 

(5.52) 
VH 

From the above equation, it is apparent that not only is the velocity VH proportional to E and independent 
of the radiation loading (i.e., independent of r and x), but for this special case of a mass-like head device, 
the velocity is independent of mH. 

A  similar situation  holds  for   | I/VHI,  the  current  velocity  control  frequency.     The equations 
corresponding to Eqs. (5.50), (5.51), and (5.52) are shown here without derivation. 

//v = 0, (5.53) 

<•>* = —^ , (5.54) 
Ce mT 

and 

A. 

VH 

c 

833lc 
(5.55) 

Thus, the relationship between coiv/coev and  coupling coefficient K33  is the same as for con/con 

[Eq. (5.31)].   This can be seen by taking the ratio of Eqs. (5.51) and (5.54). 
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a 
CO 

10 

(5.56) 

With some slight reinterpretation, the above results concerning coev and coiv hold for a more general 
frequency dependence for Zr. 

5.2.2.4  Characterization of Bj and B2 

At the end of Sec. 5.2.1, it was noted that if one characterizes either B, or B2 [see Eqs. (5.13) and 
(5.20)], then one would know all about the frequency dependence of the quantity II/VH I and a great deal 
about the frequency dependence of the quantities I E/VH | and | s/VH I (where s is the electric field on 
the CSA). In fact, it turns out that for many practical values of mH and mT, the frequency dependence 
of IE/VH | and/or | s/V^ I is qualitatively very similar to that of B,. Full characterization of the 
frequency dependence of | E/VH |; i.e., B,, is a more difficult problem, so characterization of II/VH |; i.e., 
B2, was considered first. 

5.2.2.4.1 Bandwidth Characterization of \l/VH\ using Frequency co, (Resonance Frequency for 
\I/VH\) to Minimize B2 - The quantity B, can be characterized (see Sec. A.6) by finding the equation 
for the frequency CO; which minimizes (B2)

1/2. Since all the frequency dependence of II/VH | is contained 
in B2, Oj is also the resonance frequency of II/VH |. One forms the partial derivative 8(B2)

1/2/8co and sets 
this partial derivative equal to zero.  The solution ofthat equation yields 

to,. 
m 

+ m' m, 
(5.57) 

In the case of I I/VH I (as opposed to | E/VH |, | s/VH | and B,), the frequency which minimizes (B2)
1/2, 

coi; is actually the resonance frequency for | I/VH I. This is tme because, unlike I E/VH I, all the frequency 
dependence for II/VH | is contained in B2. In terms of the resonance frequency, Oj, one may write (see 
Sec. A.7) | I/VH I as shown below. 

8xh N 

f\2 (r< + m')(<o' - wp* {CeY + 
r2 + m2 

(5.58) 

At co = CO:, one obtains 

SxhH rz + m 
(5.59) 

As with certain other special cases noted above, Eq. (5.59) leads to what may at first seem like a strange 
conclusion; namely, at least for some frequency region around the frequency coj,, if A^l,. is held fixed, 
then bigger head masses lead to a lower current for a given velocity VH and, thus, for a given source level 
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per ampere. Of course, as m is changed, either C^ or mT or both (r is assumed fixed) must be changed 
to satisfy the requirements of Eq. (5.57) to maintain coj constant. For m > r, then as m increases, mT or 
Ce must be decreased. The compliance Ce could be decreased without changing L/Ac by reducing the 
thickness of the FTR (that is, by reducing CF). However, once CF = 0 (i.e., no FTR), then one must 
consider the reduction in the value of L/Ac necessary to further reduce C^; even when this is done, one 
finds that the limiting value of   II/VH |, at co = Cö; with CO; fixed, is zero. 

The bandwidth characteristics of [ I/VH |  were investigated further by fixing co; and considering a 
bandwidth defined at two frequency band end-points, a lower frequency coL < ©; and an upper frequency 

At coL, the quantity II/VH | was forced to be some fixed multiple, G^, of the value at resonance. cou>coi 

Gi (5.60) 

where 

G'L>\. (5.61) 

Similarly, at a>u the quantity II/VH I was constrained as shown below. 

Gi, (5.62) 

where 

G'V>1. (5.63) 

It can be shown (Sec. A.8) that the bandwidth, defined as <% - ©L for a fixed value of co;, increases 
as the head mass mH decreases. That is, as far as this bandwidth criteria is concerned, smaller head 
masses are better.  This agrees with previous experience using more sophisticated models. 

5.2.2.4.2 Frequency aei to Minimize B, - The quantity B, as it relates to I E/VH | is characterized 
by finding the equation for the frequency coej which minimizes (B,)"2. After the obvious change of 
variables, the steps in deriving coei are the same as those for deriving CO; (Sec. A.6). One forms the partial 
derivative 8(B,)"2/(5co), and sets this partial derivative equal to zero. The solution of this equation for 
coei yields 

<*ei  = 
1 m 

r* + m* 

_1 
m 

\ 
(5.64) 

T) 

It is important to keep in mind thai coei is not the resonance frequency for | E/VH | or | e/VH | (see coe 

discussion in Sec. 5.2.2.5). Even though coei is not the resonance frequency for | E/VH I, it is shown in 
Sees. 5.2.2.6.1 and A. 12 that the quantity coei can be used to provide some insight concerning the 
frequency characterization of I E/VH | and some insight into corresponding design trends as such things 
as m, mT, and Ce are varied. 
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For convenience, it is useful to gather terms together and define a quantity M, as 

M, = m 

r" + m" 

J_ 
m. 

so that Eq. (5.64) can be written in the shorter form 

2 1    xi 

The magnitude of E/VH can be expressed (Sec. A. 9) in the following form: 

1 
(oivc/33 ^ 

(r2 + »r)(co2 - «;,)" Ce' I"" - w£,| <-'e 
+ — 

r   + m 

(5.65) 

(5.66) 

(5.67) 

At the frequency co = coei, the magnitude of I E/VH I reduced to 

1 

«Ä N ^ + w2 
(5.68) 

Equation (5.67) is most useful when both coei and Ce are fixed. However, if Ce is allowed to vary, it 
is convenient to remove the apparent dependence upon Ce through the substitution of Eq. (5.66) in 
Eq. (5.67) to yield 

H 

1 
ioNd, ■33 \ 

2\2      1 /   2 2\/    2 2\2      1      ,,2 
(r- + m')(w   - toej)   —- M1 + 

r2 + m2 
(5.69) 

The electric field s on the ceramic is given by 

6 = 
1 

(5.70) 

where the quantity lc is the length of a ceramic ring. The various equations for e/VH are almost the same 
as those for E/VH. The only difference is that in the multiplier (l/coNd33), N is replaced by L where the 
quantity L = Nlc is the total length of the CSA. For instance, the equations for e/VH corresponding to 
Eqs. (5.10) and (5.14) for E/VH are as follows: 

1 
VH      C0W33 

[rE0 -i(l -mEJ[% (5.71) 

and 

mLd, 
(5.72) 

'33 

Similarly, Eqs. (5.74), (5.68), and (5.69) are related to Eqs. (5.73), (5.74), and (5.73a) presented below. 
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0W33 -\ 
(r2

+m2)(co2-co2.)2Ce
2 + 

r2 + m2 
(5.73) 

H <aLd, 33 ^ 

(r2
+m2)(W-c4)2-i-M2 

r2 + m2 
(5.73a) 

and 

w A N r2 + m2 
(5.74) 

Since L (the length of the CSA) is a more fundamental design constraint than N (the number of rings 
in the CSA), the characterization of the frequency dependence implications of B, is more instructive in 
terms of s/VH instead of E/VH. This characterization of B, is indicated below and, for more detailed 
elements of the derivation, see Sec. A.11. 

Once again, we notice that somewhat contrary to general experience, Eq. (5.74) suggests that the 
larger head mass is an advantage. That is, for some frequency region around the frequency coei, bigger 
head masses lead to a lower electric field for a given velocity VH and, thus, for a given source level. On 
the other hand, as we shall sec, when the bandwidth characteristics of I e/VH | and I E/VH | are taken into 
consideration, it is clear that the larger head mass also decreases the bandwidth. 

It is interesting to form the ratio co/co^ from Eqs. (5.57) and (5.64).  It can be seen that 

(0; 

to. 

co„ 

w» 
(5.75) 

Thus, the relation between co;/coei and coupling coefficient K33 is the same as that identified for  con/con 

[Eq.   (5.32)]. 

5.2.2.5   In-water Resonance Frequency for I E/V„ I and I e/VH I - coe 

To derive an expression for the in-water resonance frequency (coe) for the quantities I E/VH | and 
|s/VH|, one forms the partial derivative (5 | E/VH | )/8co), sets this partial derivative equal to zero, and 
solves for coe.   (See Sec. A. 10). 

<n„ 
J_ 
C. 

r2 + (m + mT)2 

\    mj(r2 + w2) 

(5.76) 

As previously stated, coe, the in-water resonant frequency for the quantities I E/VH | or | e/VH I is 
different from coei. However, it turns out that for many practical values of the design parameters such as 
r, x, mH, and mT, there is close correspondence between | E/VH | expressed as a function of the in-water 



Transducer Design and Analysis 43 

resonant frequency coe and I E/VH | expressed as a function of the frequency coei which minimizes B,.  To 
help reveal this relation, Eq. (5.76) may be put in the form 

we = <4 \/l  + AfJ , 
(5.77) 

with M2 given by 

M, = 
rmn 

r" + m   + mmT 

(5.78) 

Using Eqs. (5.24) and (5.77), it turns out that | E/VH |  may be rewritten (see Sec. A.10) in terms of coe 

as 

H iöNd. 33   ^ 

(r2 + m '■¥1 i + M: 
?M: 

+ m 
(5.79) 

Suppose the design variables are such that the condition 

Af, << 1 (5.80) 

is satisfied; then coe and coei are approximately the same frequency [see Eq. (5.77)], and Eqs. (5.69) and 
(5.79) are essentially the same equation. As is explained in Sees. 5.2.2.6.1 and A.12, such conditions for 
which coei is "sufficiently close" to cos form the basis for a useful approximation to study the bandwidth 
characteristics of I E/VH    and 8/V„l. 

There are certainly values of design variables for which Eq. (5.80) is not true and, thus, coei would not 
be "close to" coe. For example, suppose that m could be made as close to zero as desired. Then the 
conditions of Eq. (5.80) would not be met (for large enough values of mT), and the design trends 
associated with fixed coei would not then be expected to hold for fixed coe. Numerical tests were consistent 
with this assertion. For example, for very small m and fixed coe, it was found that larger mT required 
longer CSA's in order to meet a given electric field requirement at coe. 

Based on some of the other special cases considered above (e.g., | E/VH | at co = coe0 or co = coei), one 
would expect that as mH is made larger and larger with co = coe, then | E/VH | as given by Eq. (5.79) 
would approach zero; that is, the voltage required for a given velocity or source level would decrease as 
mH increases. With the help of one application of 1'Hospital's rule (Sec. A.11), one can indeed show for 
a given tail mass that at co = coe then I E/VH I approaches zero as mH approaches infinity. Also, an 
alternate direct proof is discussed in Sec. 5.2.2.6.2.1.2. 

As just indicated, for this example of in-water performance at co=cue and with a fixed value of coe, the 
pencil and paper derivation of the proof that "bigger head masses are better" is more complicated than 
for previously considered examples. Because of this greater complexity and because of the importance 
of the in-water resonance frequency coe this co=coe example was chosen as the second candidate 
applications of the computer program SGM-A1 to be used to "test" and "explore" the paper and pencil 
derived design aids and insights.   In addition, the SGM-A1 predictions again indicated that pencil and 
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paper example in which bigger head masses were better was not confined to some extremely narrow 
frequency band (see Appendix B, for more details). 

The ratio co/co e is obtained from Eqs. (5.75) and (5.77). 

CO; CO 

2 2 
coe       co£(. 

i(l + Ml)'1!1 + -^(1 + M2T
1/2 = -^(1 + M})-1*2 (5.81) 

co„ 

In this case, we note that if Eq. (5.80) is satisfied; i.e., if M2 « 1, then the relation between co/co,, and 
coupling coefficients K33 is nearly the same as for con/com [Eq. (5.30)]. If this condition on M2 does not 
hold, then the effective coupling coefficient as represented by co/co e will be less than that represented by 

If m > 0 (that is, x > 0) and r * 0, then coe < coeo. To see this, start with a form equivalent to 
Eq. (5.76). 

co. 
J_ 
C. N 

2m 
r + m       m"j     mT(r" + m~) 

(5.82) 

but 

2m 2m    = _2_ 
"> o 

nijif + m-)      mTm' mm1 

(5.83) 

and 

1 < 1 

r" + m2 
(5.84) 

Thus, using Eq. (5.42) for coe 

2 ^    ! coe< — 

N 
112: 

— + — +   = co. 
i i mm. 

(5.85) 

Examination of Eqs. (5.77) and (5.78) (for r * 0) shows that coej < coe [Eq. (5.86)]. 

CO  ■ <  CO   . ei e 
(5.86) 

For the case where r ^ 0, one may summarize the relative magnitudes for coei, coe, and coeo as 

co ■ < co   < co   , ei e eo 
(5.87) 

By comparing Eqs. (5.40), (5.61), and (5.76), one observes that as r approaches zero (that is, for small 
enough values of r), then coej, coe, and coeo are nearly the same frequency. This point is summarized as: 
if r -> 0, then co„; -> co, —> co„ , and as   r^ 0. 
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(0 • " 10   " CO     , ei        e        eo 
(5.88) 

5.2.2.6  Bandwidth Characterization of | E/V„ I  and I e/V„ I 

It turns out that bandwidth characterization of I E/VH | and I E/VH I is more difficult than that of 
I/VH | (Sec. 5.2.2.4.1) because of the additional factor 1/co presents in the frequency dependency of 
E/VH | and I s/VH | (the last paragraph of Sec. 5.2.1). For this reason, it was found expedient and 

useful to consider certain approximations and/or special cases. The first consideration (Sec. 5.2.2.6.1) 
was based on an approximation involving coei. The second consideration (Sec. 5.2.2.6.2) was based on 
two special cases of a more exact approach (involving coe) which we call the Fixed End-Points Analysis 
(FEPA). The FEPA is not "only more exact but it also strongly suggests a very useful TDGS - see also 
Sees. 2, 3 and 5.2.2.6.2). 

5.2.2.6.1 Approximate Characterization of \E/VH\ and \z/VH\ Using coe, - One useful 
approximation was suggested by the discussion associated with Eqs. (5.77), (5.79), and (5.80) for 
conditions such that coei is sufficiently "close" to the resonance frequency, coe, for | E/VH I and I e/VH I; 
then a bandwidth analysis in which coei is fixed and similar to that presented in Sees. 5.2.2.4.1 and A.8 
for | I/VH |, is instructive and useful. 

As a first step, we must be more precise about the conditions to be considered under which coei is 
sufficiently close to coe.   Rearrange Eq. (5.78) as follows: 

M„ = __J__. 
r2 + m2 (5.78a) 
  + m 

mT 

Suppose relatively large tail masses, mT, are being considered such that 

LL13l«m- (5.80a) 
mT 

that is, 

T m 

then 

M,«-L. (5.78b) 
m 
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If 

m 
« l; (5.78c) 

i.e., if 

r « m, (5.78d) 

then Eq. (5.80) holds (i.e., M2« 1). 

Note also that Eq. (5.80b) may be written as 

which implies 

mT>> — + m 
m 

mT» m, 

(5.80c) 

(5.80d) 

Thus, the conditions under which coei is sufficiently close to coe shall be taken to mean 

Condition A: 

mT» 
i        i 

m 
> m, 

Condition B: 

r << m, 

(5.80e) 

(5.78d) 

In other words, we are considering large tail mass, mT, compared to the quantity m. Recall m = mH + x 
[Eq. (5.7)] and that typically x > 0. Thus, Condition A [Eq. (5.80e)] typically is equivalent to considering 
large tail masses, mT, compared to the head mass mH. Practical experience indicates that the usual values 
of r attainable versus the limits on making mH small; for example, due to flexing, radiating head masses 
mean that Condition B [Eq. (5.78d)] is a practical reality. Condition A [Eq. (5.80e)] is also achievable 
and is known to often be the outcome of a practical transducer design exercise. 

When coei is sufficiently close to the actual resonance frequency coe for | E/VH | and I e/VH |, then it 
makes some sense to consider conditions analogous those in Eqs. (5.60), (5.61), (5.62), and (5.63). 
Consider coei to be fixed and a lower frequency coL < coei and an upper frequency a^ > coei. At these two 
frequency band end-points, assume that the magnitude of the I e/VH | is forced to satisfy the following: 

= G, (5.89) 

and 
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vH 
Gu 

VH 
(5.90) 

where GL and Gu are constants. Since coej is close to coe (by assumption), it makes some sense to consider 
the special values of coL and »„ for which GL and Gu also satisfy the following: 

GL>\. (5.91) 

Gv>\. (5.92) 

[Equations (5.91) and (5.92) would always be true if we were considering the resonance angular 
frequency, coe, instead of coei.] For those limited conditions under which coei is sufficiently close to coe and 
Eqs. (5.91) and (5.92) hold, one can characterize a bandwidth as ©u - coL for fixed coeimuch as was done 
for | I/VH f in Sees. 5.2.2.4.1 and A.8. 

The details of this bandwidth characterization of I s/VH | and I E/VH | are derived in Sec. A.12. 
Some of the main results [at least for the limited conditions under which Eqs. (5.91) and (5.92) are valid] 
are as follows: 

Larger tail masses, mT, increase the bandwidth, atv - coL, and there is no penalty on the electric 
field if the mass of the head, mH, is held fixed. However, with mH held fixed and as mT is 
increased, one must decrease the compliance, Ce, to hold coei fixed. This can be done up to a 
point by decreasing CF (using a thinner FTR). If further compliance reduction is needed, it should 
be accomplished using a larger ceramic ring area, Ac. 

Smaller head masses, mH, increase the bandwidth as long as the condition m > r is met. 
However, there is an electric field penalty as the value of mH is reduced. One way to avoid this 
electric field penalty is to increase the length, L, of the CSA and at the same time, increase the 
area Ac so as to hold the ratio L/Ac constant. With this adjustment, the real penalty is the increase 
in L which in many designs problems tends to quickly violate the practical constraints upon the 
length of the transducer design. 

5.2.2.6.2 Fixed End Point Analysis - In each of the above mentioned bandwidth analyses, a certain 
chosen frequency was held fixed. In the following analysis, the frequencies coL and a^ at the end points 
of the frequency band are held fixed and the required values of I e/VH I at coL and (au are also held fixed. 
For convenience, this analysis will be referred to as a FEPA. Within the limits of the augmented SGM, 
the FEPA is exact; that is, no additional approximations are made. Also, full consideration of the fixed 
end-points analysis shows that all the necessary steps for a new and very useful TDGS - see also Sees. 
2 and 3) are suggested by the FEPA. The new TDGS could and would be completely independent of the 
SGM. The new TDGS could and should be executed using the appropriate parts (transducer element 
model, array acoustic radiation interaction model, etc.) of the CMM (Composite Math Model - see 
Sec. 2) applicable to a given array design task. The essential idea of this independence from the SGM 
is illustrated in Sec. B.4) 
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In the FEPA, the resonance frequency, coe, was constrained to be between coL and <ou as follows: 

<->i < "e < <-V (5.93) 

In certain circumstances, one allowed 

"i * «e» (5.93a) 

or 

We     *     COy. (5.93b) 

Because the resonance frequency was so constrained [Eq. (5.93)], it was assumed that achieving a given 
source level/s at the edges of the band (that is, at coL and cou) was a limiting design constraint. 

This FEPA not only automatically found a best location for coe, but provided insight into a method 
to arrive at the best choices for mT and mH. To help ensure that coe was, in fact, between coL and au, the 
slope constraints shown as Eqs. (5.94) and (5.95) were applied. 

6ca 
<0 

(5.94) 

and 

6to 
< 0. 

(5.95) 

For a given transducer design problem, the designer would determine the maximum piezoelectric 
ceramic electric field, say, emax, which the designer wished to allow.  The designer would also determine 
the velocity magnitude of the radiating face needed at co = coL, say  I VH | (0=0) , and at co = coU; say 

VH |        , to achieve the desired sound level in the water.    This would determine fixed values for 
S/V

H I m=co, and I VH I <o=(o„ as allows: 

(5.96) 

and 

\
V

H\ 
(5.97) 

Recall Eq. (5.72). 
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COC/33I v    X 

Use Eq. (5.72) to write 

Tlfiü* uLd33L 
(5.98) 

where B1L is B, [see Eq. (5.13)] with co = coL 

Lcotd. 33 it 
0 = 0^ 

(5.99) 

Let k, be a constant defined as 

kL = (0Ld, 33 
(0=Oi 

(5.100) 

Use Eq. (5.100) to rewrite Eq. (5.99) as 

L% =Blt. (5.101) 

Similarly, define a constant ky as 

*u ~  W£/^33 (5.102) 

and thus, 

L2k2 = B (5.103) 

5.2.2.6.2.1 Use of An Equation for Ce for Fixed End Points Constraints to Study Bandwidth 
Characteristics - In terms of the above described fixed end-points constraints, one may derive the 
following equation for the composite compliance Ce (see Sec. A.13): 

Ce = -— ± e       2a,     ^ 

\2 

2a t/ 

(5.104) 
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where 

2\/. 4        „2..4v at = (rz + m*)(aL - orcoy), (5.105) 

bt = -2(cot - crcoy) 
2. tjr2 + m 2 \ 

+ w 
m. 

(5.106) 

(r2 + r   + w 

m-, 
+ -2« + 1 (1 - a2), (5.107) 

and a is defined as 

a = F ftri 

(5.108) 

In principle, Eq. (5.104) for Ce could be used to study the bandwidth characteristics of | e/VH | (and 
also I E/VH | ) in general. However, only two special cases were analyzed. These two special cases are 
discussed next. 

5.2.2.6.2.1.1 Special Case 1 (a = I) - Special Case 1 uses the value of Ce from Eq. (5.104) for the 
case where a = 1 in Eq. (5.108). For a-= 1, note the following: Use Eqs. (5.100), (5.102), and (5.108) 
to write 

Ki, 

(i>Ld 33 

^Ud33 

(5.109) 

But, with a = 1, we obtain 

(o, 

CO, 
(5.110) 

Recall that at these end points (i.e., at CDL and oL1). we have set s = smax.   Therefore, we conclude that 
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W, 
\VH\        = — IKJ 
I       "   IU=(0, /,-. I       "   1(0=0),: Ji        CO 

(5.111) 

Since coL < C0u, we note that for a = 1 (that is, Special Case 1), we have 

I      "lo)=0), I      "IO=(J,: 
(5.111a) 

and 

6(d 
<0, 

(5.95) 

then the above discussion for a = 1 may be illustrated as shown in Fig. 5-1. 

IE/VHI .. 

le/VHlcD=oöL le/VHlco=(Du 

COLCOU 

0) 

Fig. 5-1— General shape of |s/VH| versus <s> for Case 1 (a = 1) of the FEPA 
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For a = 1, one obtains the following equation for Ce (see Sec. A. 14): 

^ 2 2 
(G>i   +   COy) 

m 1 

r2 + m2      mr 
(5.104a) 

Using M, from Eq. (5.65), 

r~ + m       nh 
(5.65) 

one may write 

2 2 
<0L    +    COy 

Mt. (5.104b) 

Recall Eq. (5.66). 

->        1 
(5.66) 

Comparing Eqs. (5.104a) and (5.66), one concludes that for Special Case 1 (i.e., a = 1), the coei is 
constrained as follows: 

co. 
"i   +   COy (5.112) 

For the fixed end points constraints with a = 1, we see that coej is a fixed value given by Eq. (5.112). 

Next, we detenuine for a = 1 the conditions which are required to satisfy Eq. (5.93); that is, 

wi < w
e < wi/- 

(5.93) 

From Eq. (5.112) above, we find (see Sec. A. 15) that 

W
L < wri < <«V (5.113) 

Recall Eq. (5.77). 

coe = co^i + M; (5.77) 

Thus, we note that <x>„ > co„: and write e ei 

CO,  <   CO • <  CO   , L ei e' 
(5.114) 

Thus, the left half of Eq. (5.93) is automatically satisfied for a = 1; that is, 
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coL < we. (5.93 a) 

From the definition of coe as the resonance frequency for  I e/VH |   (and also   I E/VH ), we know that 
coe < (ou if and only if Eq. (5.95) holds; that is, if and only if 

6 e 

> 0. 
(5.95) 

6(0 

We also know that coe = av if and only if 

Ö 
e 

= 0. 
(5.95a) 

0(0 

This new information may be illustrated by adding to Fig. 5-1 to produce Fig. 5-2. 

OOe (slope = 0) 

IE/VHI 

i 

,      \ ^ 

\ 

Cue (slope = 0)     I 

! 

>• 
*•* 

CÖL             (Dei                                             CDU 

CD 

Fig. 5-2 — Relation of slope, we, and "flatness" for Case 1 (a = 1) of the FEPA 
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From this information, we see that the best one could do to flatten the frequency response of I e/VH I 
in this fixed end points approach with a = 1, is to determine how to change mT and/or m to try to make 

co   = to,,. (5.115) 

Reviewing at this point, we have the following situation.   We have found that coei is fixed for Special 
Case   1 and given by 

co„ 
COi    +    tOy (5.112) 

We know that the best thing we can do to flatten the frequency response is to try to move coe up and, if 
possible, move it up so much that 

CO,     =     tOy. (5.115) 

We also know that 

to. ^ei\l1+M2 
(5.77) 

where [this appears as Eq. (A. 10.5) in Sec. A. 10] 

Ml =   
/   2 I r- + 

m + m* 
m, 

Thus, in general, we observe that increasing M, will move coe up relative to the fixed coei. From 
Eq. (A.10.5) we observe, in general, that we can increase Ml by increasing mT and/or decreasing m. 
Thus, a general conclusion for the a = 1 case is that to flatten the frequency response, one should increase 
mT and decrease m (i.e., decrease mH) until roe = coy or, failing that, until some practical limits are reached 
in increasing mT and decreasing mH. 

One can be more specific concerning practical limits for m and mT by proceeding as follows.  Using 
Eqs. (5.115) and (5.112) in Eq. (5.77) we write 

2to: 

lOi    +    (Oy 
/l + Ml, (5.116) 

or 

i + M; , 
to, 

to, 
+ 1 

(5.116a) 
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or 

For convenience, let 

(5.116b) 

(5.117) 

Note that bu > 0 since coj&yj < 1 and, therefore, since M2 > 0, Eq. (5.116b) has real number solutions. 

Write 

M, = b„ (5.116c) 

Equation (A. 10.5) for M^ 

Mi 

m + 
/  2 "»NT2 ' 

m. 
/j 

so 

m r   + m* 
- = bti> (5.116d) 

or 

r = bJm + 
2 2\ 

(5.116e) 

thus. 

j_ _    (r - mbt) 
mr     btl(r

2 + m2) 
(5.116f) 
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Since l/mT > 0, we require 

r - mbtl 2 0, (5.118) 

or 

- * bat 
m 

(5.118a) 

or using the definition of btl [Eq. (5.117)], 

r 
— £ 
m 

\ 

( 

CO u 

\2 

2 

—   +   1 
2 

(5.118b) 

For a very narrow band design, au would be only slightly larger than coL and in the limit of av -> coL, one 
finds 

2 0, (5.118c) 
m 

In the usual case, this is always true. Thus, in general, for a narrow band design, there might be many 
combinations of l/mT and m which would satisfy Eq. (5.116f) and, thus, many ways to flatten the 
frequency response by making coe = av. 

For a very wide band design where av is much larger than coL, the limiting case from Eq. (5.118b) 
is 

—   2. yß  =  1.73 
m 

(5.118d) 

In practical problems, r cannot be made large enough and m cannot be made small enough to satisfy 
Eq. (5.121d). Thus, for large bandwidths, one concludes (for Special Case 1, a = 1) that the best one 
could do is make mT as large as possible and mH as small as possible, and even then coe < (au and we 
would not have achieved the flattest band where co«, = co u- 

One more special bandwidth will be considered between these last two limiting cases of a very narrow 
and a very large bandwidth. Traditionally, there has been an interest in the half power points in the 
bandwidth. Since for a = 1 we now know the best we can do is make coe = coy, let us assume that this 
has been done and reinterpret coL as the lower half power frequency relative to the resonance frequency 
co„ co, In general, the acoustic power P is given by 

Ftfl2^ (5.119) 

Recall for our special simplifying radiation assumptions 
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R = cor. (5.5) 

Thus, 

Let PL be P for co = coL and Pe be P for co = coe = coy. 

We want 

l        2    e 

(5.119a) 

(5.120) 

Using Eq. (5.119a) gives 

WJ      <ü,r = -\Vj      tor. H W=U
L "L       2 ' H<u=a, 

(5.120a) 

However, for a = 1 (Special Case 1), 

co 
-W„ 

Ji        co, 

Since now we have coe = coy, Eq. (5.120a) may be written as 

(5.111) 

'co N2 

CO 
\V»L^--\\V»L„«e> (5.120b) 

or 

'co \ 

vw«/ 
(5.120c) 

or 

l"i\     (V 
V 

1/3 
0.793 (5.120d) 

Use of Eq. (5.120d) in Eq. (5.118b) gives 
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m 

N 

12 

/JX2/3 

2; 

+  1 
1, (5.118e) 

— * 0.711. 
m 

(5.118f) 

It turns out that, in practice, even this seemingly modest ratio of r/m is usually not achievable. To carry 
the example a little farther, suppose Eq. (5.118f) were just barely achievable; that is, suppose 

— = 0.711 
m 

(5.118g) 

Then, according to Eqs. (5.118) and (5.116f), one required mT = oo; that is, 

— =0, 
m. 

(5.116g) 

and, of course, from Eq. (5.118g), 

m 
.711 

1.406r. (5.118h) 

In summary, for Special Case 1 (a = 1), we have illustrated the following design trend: 

For flatter frequency response of I s/VH I and I E/VH | for the usual situation of desiring 
the largest possible bandwidth, one ends up choosing the largest practical tail mass, mT, 
and the smallest practical head mass, mH. This happens because of the physical limits of 
increasing the radiation resistance R = cor and decreasing the quantity m = mH + x. 

However, we also have an example where for narrow band designs, equal flatness could be achieved 
with a family of mT and mH pairs. 

Next (for Special Case 1), we examine the requirements on the length of the CSA, L, in order to 
always operate at the chosen field limit of e = smax at the end points of the frequency band. For a = 1, 
we found that 

CO, 

CO, V„ 
(5.110) 



Transducer Design and Analysis 59 

Therefore, one may use the equation for I s/VH I at either end of the frequency band to determine the 
required value of L to satisfy both end point conditions. If we choose the coL end point, then one suitable 
equation is (see Sec. A. 16) 

k2
LL

2 =(r2 + m2 (5.121) 

where b2
2 is defined as 

bt2 

(       2       ° 
C0y-C02 

<0y    +    (0Z 

(5.122) 

Note that since coL < ®u, 

0 < b,2 < 1 (5.122a) 

The situation versus the mass of the tail, mT, is very straightforward; namely, the larger the mT, the shorter 
the length of CSA, L, needed to meet the field constraint of e = emax. Since large mT also was found to 
flatten the frequency response, we see that large tail masses have no length penalty and, in fact, have an 
advantage.  There seems to be no exception to the rule that the larger mT, the better. 

The situation is not as simple concerning m. One may observe from Eq. (5.124) that for l/mT ^ 0, 
then for large enough m, L increases as m increases. So, we know that for large enough m and mT ^ oo, 
the slope of k2L2 must be positive.   One may show (sec Sec. A.16) that 

1 6^2 

2 öw 
mr' 

r' + m i("i - >) m1 
l + -2L 'tu 

(5.123) 

where 

■'a 1 <0. (5.124) 

For m " 0, the slope starts out positive. We also note, as before, that for large enough m, the slope 
must be positive. What happens in between these extremes? Note that for l/mT = 0 (mT = oo), that since 
b,, - 1 < 0, the slope is negative. Thus, for the special case of mT = oo, larger m means smaller L. This 
is a somewhat unexpected result and is similar to other findings where large head masses seem to require 
a lower field.   Suppose next that 

(5.125) 



60 Carson and Waiden 

(but 
m. 

* 0). 

Then, as long as Eq. (5.125) holds, we have the approximation 

-3 0-1) 
1 ^L2 

2 6co 

wr' 

r~ + m m-, 
(5.123a) 

For small enough m, the slope is positive and then as m increases [if we don't violate Eq. (5.125)], the 
slope would become zero and then become negative. In other words, we would find a relative maximum 
for L. However, as m continues to increase, we would eventually have to violate Eq. (5.125), at which 
point we know that for sufficiently large m, the slope must again become positive. It, therefore, appears 
that under certain conditions, one might have the situation illustrated in Fig. 5-3. 

Equation (5.123a) also shows directly that for mT = oo, the slope would always be negative 
because bf, - 1 < 0. 

L relative max 

L relative min 

m 

Fig. 5-3 — One possible relation of L (total length of the CSA) as a function of m for Case 1 (a = 1) of the FEPA 
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For Special Case 1 (i.e., for a = 1), the equation for Ce is the same as that found in Sec. 5.2.2.6.1 for 
coei fixed; thus, the conclusions concerning Ce are the same. 

5.2.2.6.2.1.2 Special Case,2 [see Eq. (5.126) below] - Before beginning the discussion of Special 
Case 2, it is noted that Special Case 2 was chosen as the third candidate application of the computer 
program SGM-A1 to be used to "test" and "explore" the pencil and paper derived design aids and insights 
of Sec. 5. The SGM-A1 predictions and associated observations are presented in Appendix B. The reader 
may find it useful to consult this Appendix B third candidate application in conjunction with studying 
Special Case 2. 

Special Case 2 was chosen as the third candidate application of the computer program SGM-A1 for 
the following three reasons: 

1. The special importance of the FEPA approach (also see Sec. 5.2.2.6.2.2), 

2. The relative complexity of the paper and pencil derived design aids and insights for the FEPA, 

3. The relation of this third candidate application (Special Case 2 of the FEPA approach) to the 
second candidate application (bigger head masses are better performance at co=coe with a fixed 
value of coe). 

The general results of this third candidate application of the computer program SGM-A1 were the 
same as for the first two applications; namely, 

1. The corresponding derivations and design insights of Sec. 5 were fully consistent with subject 
computer predictions; this provided a strong indication that there were no significant errors in the 
associated pencil and paper derivations of Sec. 5. 

2. The predictions provided additional clarity and understanding concerning the "design aid insights" 
as originally developed from the pencil and paper derivations of Sec. 5. 

The defining condition for Special Case 2 is the following: 

(5.126) 

In other words, the motion per electric field (or per volt) is the same at the end points (coL and co,j) of the 
frequency band.  Using Eq. (5.108) for a, Eq. (5.100) for kL and Eq. (5.102) for kU5 one obtains 

ui 4 33 

(Oy J33 

H 
(5.109) 
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Because of Eq. (5.126), one obtains for Special Case 2 

CO, 
a 

to u 

For a = (aL/(x)u, one obtains the following equation for Ce (see Sec. A. 17): 

1 
(0,0) LWU\ 

' r2 + m2 + 2m + i 

r2 + m2 

See Eq. (A.10.43) (printed here for your convenience). 

M 1 2w 
2 /   2 2\ 2 2 mf      mj(r   + m )      f + m 

(5.127) 

(5.104c) 

Note that Ce may be written 

\ =  —— Me- (5.104d) 

From Eq. (A. 10.40) we have: 

2 1   H, 

Comparing Eqs. (5.104d) and (A.10.40), we conclude that for Special Case 2, we may identify coe as 

coe = coLcoy. (5.128) 

Thus, for Special Case 2 (or equivalently for a =  coL/ u>v) in this FEPA, the resonance frequency coe is 
a fixed value given by Eq. (5.128). 

Notice that since   coL <   coU5 then COJ; <   coL c£>v <   coj, and, thus, for a =  coL/ au, we automatically 
satisfy the requirements of Eq. (5.93). 

WL   <    COe   <    COy. (5.93) 

The above infonuation for Special Case 2 may be illustrated as shown in Fig. 5-4. 

The best that can be done to flatten the frequency response is to adjust m and mT so as to maximize 
the value of I s/VH I        .   From Eq. (5.72), one may write 

TT^> <*eLd33 

(5.129) 
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IE/VHI - 

Fig. 5-4 — General shape of |e/VH| versus co for Case 2 (a = wL/(Ou) of the FEPA 

where Ble is the value of B, for co = we.  Consider first the partial derivative of |e/VH|u=(0 with respect 
to mT.  This is equivalent to considering 6B,e /6mT.   One finds (see Sec. A. 18) 

6mT 
2F„,F. er e2 ' 

(5.130) 

where 

el 
N 

r" + m" + m 
w. 

+ r' 
l i        i 

+ m (5.131) 

and 
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e2 2 
mT 

m 
ymT      r   + rn 

N 
m \2 

ymT 
i        i 2\2 (f* + ro^ 

(5.132) 

Examination of Eqs. (5.131) and (5.132) shows that for all values of m and mT 

(5.131a) 

and 

Fe2>0. (5.132a) 

Thus, 

ÖS le 

6 m. 
> 0, (5.130a) 

Therefore, we conclude that as mT increases, | s/VH | M- increases which means that, once again, 
increasing mT flattens the frequency response of I sA^H I (and | E/VH \). The best possible value would 
be mT = oo. 

Next, the partial derivative of I s/VH I w=m with respect to m was considered. Although a general 
expression was derived (see Sec. A. 19), it did not lend itself to easy general interpretation. Therefore, 
only the special case where mT -> GO was considered.  Then (see Sec. A.19), 

öß le IT
1 

6 m {r~ + m 
(5.133) 

for 

mT - 

Thus, for mT —> oo, the slope is always negative and, thus, the smaller m, the larger | sA^H | c0=ffl .   Once 
again, we find that the smaller m, the flatter the frequency response. 

When Eq. 5.133a holds, one has an alternate proof to that presented in Sec. 5.2.2.5 which shows that 
for fixed coe, then as m increases, I sAV,f | to:_ro decreases. Thus, the bigger m, the better as far as the 
required electric field s for a given source level at co = coe. However, as we just noticed, this is the 
opposite of what is needed for a flat frequency response. 
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Next (for Special Case 2), we examine the requirements on the length of the CSA, L, in order to 
always operate at the chosen field point limit of s = smiix at the end points of the frequency band. For 
Special Case 2, the defining constraints were 

H 

(5.126) 

Therefore, one may use the equation for | e/VH | at either end of the frequency band to determine the 
required value of L to satisfy both end point conditions. If we choose the coL end point, then one suitable 
equation is (see Sec. A.20) 

kh2 — Me - — TO 
(0, 1 \ 12 

Me - — (5.134) 

One fonn given for Me in Sec. A.10 is [Eq. (A.10.46) is printed here for your convenience] 

M. 
TO \2 

\{nh r" + m" r2 + w2 

Using Eq. (A.10.46) in Eq. (5.134), one may calculate the required L for any choices of m and mT. 

Next, the 8L2/8mT for Eq. (5.134) was derived (see Sec. A.20) for use in further characterizing the 
behavior of L versus changes in mT. This partial derivative is useful because for those conditions where 
we find that this partial derivative is negative then we know that the slope of Eq. (5.134) is negative and, 
thus, as mT is increased, L decreases. Similarly, for those conditions where we find that this partial 
derivative is poistive, we know that as mT is increased, L increases. We will, in fact, find that for most 
transducer designs the subject partial derivative is negative. 

The resulting equation for this partial derivative is 

6mT 

2   "z t ji 

m1 
w, 

r   + m 2 — + m 
m. W F„ - 

(O, 

(O 
L) 

(5.135) 

where 

\L 1 - 

m "if 1 

<oJ mT      r2 + m2 

m \2 

V mT + TO 
2\2 (rz + TO ) 

(5.136) 
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and 

2t 

N 

i + 
'r2 + m2 (5.137) 

+ m 
m. 

Since ©[/cou < 1 and it can be seen that the rest of the right-hand side of Eq. (5.137) is less than "1" 
(divide the numerator into the denominator), we conclude from Eq. 5.136 that 

Fu>0. (5.136a) 

Thus, from Eq. (5.135), we conclude that the sign of 8L2/5mT is determined by the sign of quantity 
(F2L -  ©u/fflj. 

First, notice that Eq. (5.137) shows that at least for small enough values of mT then F2L can be made 
arbitrarily close to a value of 1 and, thus, less than the fixed number au/aL > 1.  Therefore, 

21 
O), 

co, 
< 0. (5.137a) 

We can conclude that for small enough values of mT the sign of the subject partial derivative is negative. 
Thus, for small enough values of mT , as mT is increased, L decreases. 

Second, notice that as mT increases, the F,L increases.   Then, one may ask what are the conditions 
such that 

21 

to, 

CO, 
I> 0    (for what conditions) . (5.138) 

This is the same as asking the following question: As we increase mT starting from small enough values 
of mT, what are the conditions such that the sign of the subject partial derivative will change from 
negative to positive? This, in turn, is the same as asking, as we increase mT starting from small enough 
value of mT, what are the conditions such that as we increase mT will we reach a minimum value of L 
after which as mT is further increased, L will also increase. 

One finds (see Sec. A.20) that Eq. (5.138) is equivalent to the following: 

m 
r2 + m2 

r 

m 

1 

* 2 

(5.138a) 

Since l/mT > 0 (except for mT = oo), then Eq. (5.138a) leads to the following requirement: 
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r > m 

\ 

to, 

CO, 

(5.138b) 

Notice that if the 

/ (Oy/COi 1 > 1,   (thus, (Oy £ \ßu>L ), 

then Eq. (5.138a) [and similarly Eq. (5.138)] requires r > m and that the larger the bandwidth (i.e., larger 
^U^LX the larger r must be in relation to m in order for Eq. (5.138) to hold. 

As has already been explained, in most practical cases r < m. Thus, in most practical cases where 
one is seeking as broad a bandwidth as possible, the usual situation will be for Eq. (5.137) [not 
Eq. (5.138)] to hold, even for the largest practical values of mT. If Eq. (5.137) holds (i.e., F2L - (al}/(i)L 

< 0), then we have 8L2/8mT < 0. Therefore, we have just found for the usual broad band design that 
as mT is increased, the length of the CSA, L, required to meet the electric field constraints at the ends of 
the band, decreases.   (See also the third candidate application of the SGM presented in Appendix B.) 

Not only does the frequency response flatten, but the length L may be shortened as mT increases. 
Thus, we can see why for broad band designs, the design trend is to require the largest practical value for 
mT. 

However, for narrow band designs, one notes that r < m is acceptable according to Eq. (5.138b). In 
these narrow band cases one could have, for practical head masses mH, the condition of Eq. (5.138) and, 
thus, have 8L2/8mT > 0. Then, increasing mT would increase the length of L required to meet the end 
point electric field constraints. 

The only characterization of L versus changes in m was for the special case of mT ; 

Eq. (A.10.46) (printed below for your convenience) shows that 
oo. For that case, 

M. 

(for wr=°°) 

1 

yV2 + m2 

and Eq. (5.134) becomes 

k2L2    - 

(for mr=°°) 

CO, 

co?, r2 + m2 

to, 
1 - —L- 

m 
\2 

w!/ f2~r^ (5.134a) 

We observe from Eq. (5.134a) that as m is decreased (for example, to flatten the frequency response), the 
length L needed to meet the end point field constraints would increase. Thus, at least for the special case 
of mT = oo, the penalty paid for decreasing m to flatten the frequency response is the requirement to 
lengthen L to meet field constraints. 
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Consider next Eq. (5.104c) for the composite Ce. 

1 
ce = (Oy(Oi N 

r2 + m2      2m 
2 

+   ™   +   1 
ro. mT "

1
T 

(5.104c) 
r2 + m2 

With m held fixed, then as mT is increased (which we know is the desirable trend), then Eq. (5.104c) 
shows that Ce must be decreased; that is, the CSA and FTR combination needs to be made stiffen This 
is the same trend as for Special Case 1. 

For large values of mT one has 

Ce ~ — l        . (5.104e) 

Then, as m is decreased to flatten the frequency response, Ce must be increased (mT held fixed). This is 
the same trend as found in Special Case 1. 

5.2.2.6.2.2 Summary of FEPA - The above described FEPA, showed why in the usual practical 
longitudinal design problem, large tail masses, mT, and small head masses are desirable to flatten the 
frequency response of the transducer. If it were possible to produce larger radiation resistances, R, than 
the usual physical constraints dictate, then there would be exceptions to this design trend of always using 
large mT and small mH. 

The analysis also showed that in most but not all usual circumstances, the larger the tail mass, mT, 
the shorter the length of the CSA, L, needed to meet the electric field constraint, emax, for the CSA. 
However, the larger mT, the smaller the composite compliance Ce (i.e., the stiffer the CSA/FTR assembly), 
needed. This means that one should use the thinnest practical FTR and one must increase the area Ac of 
the piezoelectric ceramic rings. The fact that L may be shortened with larger mT helps in the process of 
decreasing Ce. 

Decreasing the head mass, mH, to flatten the frequency response was shown under usual circumstances 
to increase the CSA length, L, required to meet the field constraint, smax, and required an increase in 
compliance Ce. 

The FEPA explicitly illustrated that the best location for the resonance frequency, coe, is a function 
of the acoustic field constraints of the design problem. This, in turn, suggested that design approaches 
that start out by fixing coe (or some other interesting special frequency) are not an efficient way to arrive 
at a near optimum design. A better approach would be to choose coL and coLI and fix the corresponding 
values of I E/VH |  at these end points as indicated above. 

The FEPA suggests all the necessary steps for a new and very useful TDGS which would be 
completely independent of the SGM. It could and should be executed using the appropriate parts of the 
CMM (Composite Math Model - see Sec. 2). The essential idea of this independence from the SGM is 
illustrated in Sec. B.4. The development of such a fixed end-point TDGS for the general frequency 
dependence case would involve a computer aided iterative approach in the CMM. 
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5.3  Analysis with Tuning Inductor 

The analysis presented in Sec. 5.2 did not consider inclusion of an electrical tuning inductor as part 
of the transducer element. However, the basic equations already presented are all that is needed to 
proceed with an analysis which includes a tuning inductor. Although not presented in this paper, one 
could use these basic equations already presented to provide insight into the use of an electrical tuning 
inductor to help minimize the demands on the power amplifier used to drive the transducer element. 

In the remainder of this book, three examples are presented to illustrate how one might proceed to 
use the basic equations to characterize the effects of including a tuning inductor. Only a parallel tuning 
inductor (see Fig. 5-5) is considered. 

Figure 5-5 indicates the main quantities to be used to begin consideration of adding a parallel tuning 
inductor with inductance Y to the previously considered transducer element without a tuning inductor. 

O- 

O 

E; r     :] Z E 
Transducer Element 
Without Inductor Y 

Fig. 5-5 — Inclusion of an inductor T in the equivalent circuit of the transducer 

With a parallel tuning inductor, note that the input voltage E; to the composite transducer is the same 
as the voltage E on the CSA; that is, 

Ei = E. (5.139) 

The input current I; is given by 

L = / + ——E. 1 i«r 
(5.140) 

Thus, the motion relative to Is is given by 
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I, I 1 —  +   
icor  V, H 

(5.141) 

Recall the following equations: 

<o Nd 
[rEo -i(l -mEj\t 

33 

(5.10) 

^.^[0.^ + WJ. (5.16) 

and rewrite Eq. (5.141) as 

VH     ö331c 

1 
mF uNd 

-[rE0-i(l-mEj\. 
33 

(5.142) 

Equation (5.142) could be manipulated, similar to the examples in Sec. 5.2 for I/VH, to study the various 
affects of the inductor in I;/VH. For example, for I/VH, one interesting quantity was the in-air resonance 
frequency con. For I;/VH, let the in-air resonance frequency be con,. Since in-air r = 0 and m = mH, one 
has 

#33 *< 
[(1 - mjj] 

1      i 
M 'rNd. 

-(1 -mEo), 
33 

(5.143) 

or 

«331« 
(i - 'V.)- 

1 

w2rw 
-(1 - mEn) 

33 

(5.144) 

where E0 and I0 are evaluated at  co =  con.. 

In this idealized case of no losses in air, one could derive an expression for con, by setting the right 
side of Eq. (5.144) equal to zero and solving for co. An easier characterization is to solve for T as 
follows: 

1 

#33 
(5.145) 

and 
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1  = to2 NA&3 (1  ~ m^ 
r   "  <"V   S33K     (1   " "'£0) 

(5.146) 

In Eqs. (5.145) and (5.146), I0 and E0 must be evaluated at co=con..   One can show (see Sec. A.21) that 
the low-frequency capacitance CT is given by 

833 *c 
(5.147) 

Thus, 

1      (J - mHEo) 

<o2,Cr 0. ~ mHI0) 
(5.148) 

One can also show (see Sec. A.21) 

h + (uM/33)2 

(5.149) 

Thus, 

1 - mj0 

m^u)nlNd33)
2 

co ,CT (1 - m^) 

(5.150) 

(o ,CT n     1 

K'M/33)2       ma 

CT      (1 - mj0) 
(5.151) 

with I0 evaluated at co = ©„..  In Sec. A.22, it is shown that Eq. (5.151) may be rewritten as follows (for 
© =©„.): 

r = 1 
2 r> 00 ,CT 

CO 
2 (tt / - <o n   v    n w 

«m   («!/ -  wj) 

(5.152) 

Recall that com   < con.    Thus, if com   < con < con,, that is, if con. > con, then the right-hand side of 
Eq. (5.152) is positive, and since T > 0, there are values of Y that satisfy Eq. (5.152). 

Note that if con, > con, then as co„, approaches con (from the right), Y increases without limit because 
co*, - &l approaches zero.   This checks with the fact that Y = 00 is the same as no parallel inductor, in 
which case con, = con. 
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If com < ran. < ©n, then cu*. - ©^ < 0 and ra*, - co^ > 0, so Eq. (5.152) would call for negative 
inductances which, of course, do not exist. 

If con, = com, then T = 0, which would be the same as a parallel short circuit for the transducer 
element. 

If <an, < <am < con, then both raj;, - G>1 and (o2
a, - ra* are negative and thus, Eq. (5.152) again calls for 

r>o. 

Thus, it appears that for any inductance other than r = 0 or F = oo, there are two in-air resonances 
for I/VH, one above co„ and one below cam. 

Graphically, these conclusions are illustrated in Fig. 5-6. 

Fig. 5-6 — Qualitative character of | I/VH | (includes parallel inductor); solid line:  no losses, dotted line:  with small losses 

Although not analyzed above, we know (for example, from the law of conservation of energy) that 
| I/VH I would not reach a value of zero, but would behave as illustrated with the dashed portions of the 

curve. 
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As a second example of use of the previously derived equations to characterize the affects of including 
a parallel inductor, consider the following. Equation (5.142) for I/VH (which includes the inductor) may 
be shown (see Sec. A.23) to be analogous to Eq. (5.16) for I/VH (which does not include the inductor). 

S33 lc 

1 - 1 

(oTC, 
ml0, + irt0, (5.153) 

where 

V = h 
wTCT 

(5.154) 

Note that, as previously observed, if T = oo, then the equation for I/VH reduces Eq. (5.16) for I/VH 

(no inductor). 

Recall that with no inductor, we noted that for I0 = 0, the I/VH was independent of the radiation 
loading (independent of r and x). This was considered a "current velocity control condition." For no 
inductor, the current velocity control angular frequency raivwas given by 

1 
<->* = —7—. 

CemT 

(5.54) 

and at this frequency, 

O-Ofc, £33*« 
(5.55) 

Similarly, from Eq. (5.153), we note that if 

V = o, (5.155) 

then 

833\ w2,rc, 
«V * 

(5.156) 

where ü)iv, is the angular frequency such that Eq. (5.155) holds, that is, the current velocity control 
angular frequency with a parallel inductor. 

When Eq. (5.155) holds, we see from Eq. (5.154) that the following also holds: 
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'o-       2 

E, 
= 0, 

<>rcT 
(5.157) 

or (providing E0 * 0) 

<vrc, 
(5.158) 

Thus, Eq. (5.156) may be rewritten as (for co = <oiv,) 

8uh 
1 - (5.159) 

«/ 

Note that if I0 = 0 (which we have noted requires T = oo, i.e., no parallel inductor), then Eq. (5.159) 
reduces to the no-inductor case of Eq. (5.55). 

Equation (5.158) may be solved for the T needed for a selected current velocity control frequency 
©;„,. 

r_ 1        Eo 

<*l'CT *° 
(5.160) 

with E„ and L evaluated at o = <aj. 

Equation (5.149) above may be used to rewrite Eq. (5.160) as 

r = 
<*l,cT 

l + 
1   ("M*33)2 

(5.161) 

Note that if I0 > 0, then since T > 0, there would exist a value of T corresponding to such choices of 
©iv..  It turns out that I0 > 0 covers all usual practical cases.  To see this, observe the following.  Recall 

(5.17) 

for no parallel inductor (T = oo) I0 - 0 for eo = raiv.  Thus, if 

<V > w*v. (5.162) 

then 
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/„>0. (5.163) 

Thus, we see that for <aiv, "close" to coiv, one would require a large inductance value for T, and as caiv, 
is increased in value above that of coiv, then I„ increases, and, thus, by Eq. 5. (170), the required value of 
T decreases. Next, we need an equation to compare coiv with on. Since ©?v = l/C^m.,. [see Eq. (5.54)] 
and (s>\ = 1/Cj (l/mH + l/mT) [see Eq. (5.27)], the desired equation is 

to*. = 
1 

-I + 1 

w. 
(5.164) 

As we have already observed, "good transducer designs" have very large values of mT/mH and, ideally, 
mT/mH -» oo. Thus, from Eq. (5.164), we see that normally cöiv has a very small value and in the limiting 
case approaches zero. Thus, in turn, from Eq. (5.162) we see that in these "good designs" that for all 
practical values of coiv., we have I„ > 0 [Eq. (5.163)] and, thus, a parallel inductor will exist [Eq. (5.161)] 
for such values of ©iv.. 

As a third and last example of use of previously derived equations to characterize the affects of 
including a parallel inductor, we give some consideration to the input impedance Z; with a parallel 
inductor included. 

Referring to Fig. 5-5, the input impedance Z; is given by 

Z, = ^ (5.165) 

but, 

E, = E (5.139) 

so 

z -S. (5.166) 

One may also note from Eq. (5.166) that 

Z, = (5.167) 

From the characteristics already presented for E/VH and VVH, we may note that in air at ra 
goes to zero and, referring to Fig. 5-6, we note that at two frequencies I/VH goes to zero, 
qualitatively, we expect Z; in-air to be shown in Fig. 5-7. 

m,E/VH 

Thus, 
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Fig. 5-7 — Qualitative character of | Z, | (with parallel inductor); solid line:  no losses, dotted line:  with small losses 

As previously discussed, with small losses included, these zero conditions would not occur and one 
would expect the qualitative behavior indicated by the dashed lines. 

As r -> oo, we have found that we approach the previously studied case with no parallel inductor, 
then the highest frequency peak in Fig. 5-7 moves down to the angular frequency ©n and the lowest 
frequency peak moves down to co = 0. 

The behavior of Z; in air vs the in air directly measurable quantities CT, com and con was of some 
special interest in the STRIP (the program where the simplified guidance model, used in this document, 
was developed) effort and so this characterization is pursued further as follows. 

Rewrite Eq. (5.166) as follows: 
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1   _  h 
2i      E 

(5.166a) 

Use Eq. (5.140) to rewrite Eq. (5.167) as follows: 

± = Z +J_ 
Zj     E     mT 

(5.168) 

But, 

1=1 
Z      E 

(5.169) 

where Z is the input impedance (see Fig. 5-5) to the transducer element without the parallel tuning 
inductor. Use Eq. (5.169) to rewrite Eq. (5.168) as follows: 

1 i + iwr 
(5.170) 

In Sec. A.24, it is shown that 

= iuC, 
(«1 - *>2) 

(5.171) 

Notice that at © = e>m, 1/Z | ^.^ = oo; that is, Z | ■ ^ = 0 and at to = ©n, then 1/Z | ^.^ = 0.   These facts 
agree with previous derivations concerning E/VHI ^r and I/VHI in.^r 

Use of Eq. (5.171) in Eq. (5.170) gives 

Note the following: 

= I <oC, 
/to \2 /«2 

(0 
V    »/ 

(5.172) 

1.   For oo « e>m < ran, then 

i-h-i)- (5.172a) 

2.   For © < <om < ron, then (©„ - <a ) > 0 and (co* - eo ) > 0, so an T exists which makes 

i-- (5.172b) 



78 Carson and Waiden 

3. For © = ©m, the 1/Z; = 1/Z = oo independent of the value of T. In the actual case of some internal 
losses, it is found that this tendency is still present in that changes in T at © = <am do not have 
a big effect. 

4. For ©m < © < ©^ then (©2 - ©2) < 0 and (©2 - ©2) > 0 so the factor ©CT(©m/©n)2/(©2 - ©2)/©2 - 
©2) < 0, and since r > 0, there is no T which cause 1/Z; I „,.„;, = 0 for ©m < © < ©n. 

5. For ©m < ©„ < ©, then (©2 - ©2) < 0 and (©2 - ©2) < 0 so that the factor ©CT(©m/©„)2/ (©2 - 
©2)/©2 - ©2) > 0, and T exists so that 1/Zi | ^ = 0. 

These five observations agree with the quantitative information shown in Fig. 5-7. 

Suppose that in an actual transducer the values of CT, or ©m/©n (or equivalently ©n/©m), or ©m or ©„ 
vary from some desired baseline value. How could one adjust T to compensate and, thus, cause the 
maximum and minimums of 1/Z; | iB.^ to still occur at about the same baseline frequency values? Equation 
(5.172) yields the following guidance: 

1. ©m (the frequency of the maximum 1/Z; I in.^r) is independent (or with small losses nearly 
independent) of T (see item 3 above). Therefore, T is not effective in controlling ©m and, thus, 
the FTR should be used to try to adjust ©m to the baseline value. 

2. Increases in CT or ©„,/©„ (or decreases in ©n/©m) or ©n require decreases in T in order to adjust 
one or the other of the minimum values of 1/Z; I j^ to occur at the baseline frequency. 

Similar decreases in CT or ©„/©„ or ©n require increases in T to compensate. 
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Appendix A 

DETAILED DERIVATIONS 

A.O  DETAILED DERIVATIONS 

In order to avoid interrupting the flow of thought in Sees. 4 and 5, the details of the derivations of 
some relationships were omitted from Sees. 4 and 5. These derivations have been gathered together in 
this Appendix. In some cases, the details are presented only for the convenience of the interested reader. 
In other cases, the reader may find that the details and accompanying observations and analysis are 
essential for a complete understanding. 

A.I   DERIVATION OF THE INITIAL FORM FOR E/V„ [EQ. (5.9)] 

The starting point for the derivation of Eq. (5.9) is Eq. (4.8) from Sec. 4 which follows. 

iuiNd. 33 

1 + m(CF + QZ 

Equation (4.8) must be reformulated in terms of VH, ZH and ZT which is done using Eqs. (4.7) and (4.13), 
respectively, repeated below from Sec. 4. 

Z = 
zH + zT' 

and 

V = 1 + 
z \ 

vH- 

These last two equations used in Eq. (4.8) yield the following: 

1  + 2E\ 
mNd, 33 

(A.1.1) 

1 + mi.CF + QZHZTI(ZH + ZT) 

81 
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Thus, 

Vu 

1 + 
2 \ 

itoNd, 33 

1 + m(Cp + O 
zHzT 

zH + zT 
(A.1.2) 

A slight rearrangement of Eq. (A.2) and use of Eq. (4.18) (Ce = CF + C) yield the desired result; namely, 
Eq. (5.9) which is reprinted here for convenience. 

1 
VH      iioNd33 

(       ZH\ 
1 + -JL 1 + Jw C. (   Vr   1 

yZH + ZT) 

A.2  DERIVATION OF A SIMPLER FORM FOR E/VH [EQ. (5.10)] 

The starting point for the derivation of Eq. (5.10) is Eq. (5.9) (derived above in Sec. A.l).   First 
multiply through the left-hand side of Eq. (5.9) by the 1/i factor. 

V„        toNd33 

1      'i  +  "» Z_F\ 

Z 
coC (   ZHZT 

N 

e]zH + zTj 
(A.2.1) 

Then perform a series of algebraic manipulations as follows. 

1     (ZH 
+
 ZT) 

toNd33 

toC 
(_z1zI_\ 

AzH + zTj 

(A.2.2) 

H toNd, 33 

aCeZH - i 
(Zu + Zr\ (A.2.3) 

and 

toNd. 33 

aCeZH - i 
\ZT 

+   1 
n 

(A.2.4) 

Substitute the simplified fonns for ZT and ZH from Sec. 5.1 which are; ZT = icomT [Eq. (5.1)] and  ZH 

co(r + im) [Eq. (5.8)]. 

1 
VH       toNd33 

2 r, ,       .x     .fw(r + im)     1 
(a C.(r + im) - 1 —  + 1 

1     itomT 

(A.2.5) 
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E 

H (i)Nd33 

u"Ce(r + im) 
f(r + im) + } 

m. 
(A.2.6) 

VH       uNd33 

<»2Cer 
m. 

/ 
+ i vi'Cm - HL 

mT 

(A.2.7) 

and 

E 

H (uNd. •33 
«aC.- 

mn 
+ i m\(ts2C. 

m7 

(A.2.8) 

At this point, use the symbol E0 from Eq. (5.11) in Sec. 5.2.1 which is 

E0 = 
( 

mT/ 

to obtain 

VH      uNd33 

[rEo + i(mEo - 1)] (A.2.9) 

This last equation is equivalent to Eq. (5.10). 

A3  DERIVATION OF A SIMPLER FORM FOR I/VH [EQS. (5.15) AND (5.16)] 

This section presents the derivations of the various expressions for I/VH. These derivations are almost 
identical to those for E/VH presented above, but are documented below for the convenience of the reader. 

First, we present a derivation of the expression for I/VH as it appears in Eq. (5.15). The starting point 
for the derivation is Eq. (4.10) shown below. 

V _ *33i« 1 

/        Ac    1 + im (C   + C)Z 

Equation (4.10) must be reformulated in terms of VH, ZH and ZT using Eqs. (4.7) and (4.13) which were 
also repeated above in Sec. A.2. 
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(     z„\ 
1 + 

&31, 
1 + iu(CF + C)    "  T 

zH + zT (A.3.1) 

and 

VH     SM        Z 
1 + _2|i + j(o(CF + C)     H  T 

ZH+ZT 

(A .3.2) 

Use of Eq. (5.18) (C'e = CF + C') yields the desired results; namely, Eq. (5.15) below 

'H        833  < 

A-   ( Zh 1   +  -± 1 + jcoC, /(   ZHZ1 

X
Z

H 
+ zr, 

Next, we present the derivation of an alternate expression for I/VH given in Eq. (5.16).   To do this, 
Eq. (5.15) is rearranged to appear as follows: 

^H      833* c 
1  + 

Z„\ 
+ zco CeZH 

(A.3.3) 

At this point, use the radiation model approximations for ZT and ZH which are ZT = icomT [Eq. (5.1)] 
andZH = tt>(r + im) [Eq. (5.8)]. 

*if      £33 *c 

..     co(r + im)      .  2/n//       ■  \ 1 +—\  + IM Ce(r + im) 
mm-, 

(A.3.4) 

*H 833lc 

l - i— + — + JCO C„ r - co C„ m 
m-r     mn 

(A.3.5) 

*H 833^0 
1 - co Cem  + — 

1 m T) 

( 
+   I 2/-./ r 

m iyj 

(A.3.6) 

and 

w/        #33 *c 

1  - m In1 

CO'C 
w. 

/ 
+ zr 

V 

,2/"' 1 \ 
co^c; - — 

mTj 

(A.3.7) 

At this point substitution of the symbol I„ from Sec. 5.2.1, where I0 = Cü
2
C^ - l/mT [Eq. (5.17)], yields 

the desired results, Eq. (5.16) below 
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&31, 
[(1 - ml) + irl] 

A4   DERIVATION OF AN EXPRESSION FOR co>m [EQ. (5.31)] 

The starting point for the derivation of Eq. (5.31) is the pair of equations for the idealized in-air 
resonance frequency [Eqs. (5.24) and (5.27) from Sec. 5.2.2.1]: 

C0„ 
C, 

( 
_L + -L 
mH      mT 

and 

CO 
1     1 

C'.\nH m Tj 

Taking the ratio of these two relations one obtains Eq. (5.28) the following: 

^ = ^>o, 
CO 2       C' 

Next one assembles Eqs. (4.2a), (4.2b), (4.4), (4.18), and (5.18), respectively. 

,£   L 
C = S 33 T ' 

C = S. D   L 
33 ~r > 

Ac 

^33   ~~ ^33       #33^33» 

c=cF + c, 

and 

c;.= cP + c. 

Using these equations in Eq. (5.28) yields the following steps. 
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and 

c + CF 

C + c/ 
(A.4.1) 

to 
533 ~r + cE 

W„ ^33 ~r + CF 
Ac 

(A.4.2) 

to 

co„ 

^33 "7"   + CF 

(^33   - Sa**») T   +  Cf 

(A.4.3) 

co„ 

w« 

S33 ~r + CF 
Ac 

^33 ~T  + ^F 
Ac 

£33^33^ 
(A.4.4) 

g33d33L I 1 

•^33 ~r   + Cf 
Ac 

(A.4.5) 

«„ 

co„ £33^ '33 

J33 

/ 1 

1 
V 

.   CFAe 

^Z3 

(A.4.6) 

Recall the following definition of K„ found in Eq. (4.24). 

#33"33 K. 33 

■»33 

Substitution of this definition into Eq. (A.4.6) yields the desired result [Eq. (5.31)]. 
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i - Ki r2 (                     1 
Si 

1   ♦   C'A< 

(5.31) 

A.5 DERIVATION OF EXPRESSIONS FOR THE IN-WATER VALUE OF | E/VHI AND 
! I/VH | AT THE IN-AIR RESONANT FREQUENCIES, cora AND co„ [EQS. (5.34) AND 
(5.38)] 

Equations (5.34) and (5.38) are expressions for | E/VH | at com and I I/VH I at on respectively and both 
assume the assumptions of the simplified radiation model [Eqs. (5.1), (5.2), and (5.3)]. However, the 
relations are shown here to be special cases of two more general relations, derived here without use of 
the radiation model. 

The starting point for the derivation of Eq. (5.34) is the basic expression for E/VH found in Eq. (5.9). 

VH       iuNd33, 
i rltv 1 + *ioC„ 

(   Z  Z    \ 

\ZH   +  ZT. 

In-air impedance of the head assembly experiences no radiation loading. 

^In-air H 

and 

= Z„ + Z.. 

At the resonant frequency com in air, E/VH is minimized.  Thus, 

co„ 
(ZH + ZT\ 

\ zHzT j 
(A.5.1) 

In water, when E/VH is evaluated at the in-air resonant frequency com we get 

(ZT + Z 

uJNdr,, m        33 

H.„ 'H in-«!r T 

\ " in-air    M      / 

(   ZH       ZT 

z„        + ZT 
" ln-witor * /J 

(A.5.2) 

and 

^33Wm 

ZT + ZH + 2m\ 

I L 

(Z^Z^Z^ZJZ, 

ZHZT(Z„ + zm + ZT) 
(A.5.3) 
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where Zm is the radiation impedance at con 

1        1 
VH      iNd33^m ZT 

VB 
+ Zrm 

+ ^XVr) - &B 
+ ZT)(

Z
H

+Z
J
Z

T 

(
Z

H
Z

T) 

(A.S.4) 

1        1 
VH      iNd33«>m ZT 

(ZH+Zrm
+Zr) 

(ZH + ZT)(ZH+ZJ 
(A .5.5) 

1 1 
VH      iNd33<*,n   ZT 

ZH+Znn+ZT-ZH-Zrm 

ZTZm\ 
zn  J 

(A.5.6) 

1 (  ZrZr^ 

H iNd^mZT 

(A.5.7) 

and 

7
M Vu      iNdi3(am ZH 

(A.5.8) 

When we substitute the simplified model for the head assembly operating in air [Eq. (5.2)] into the 
expression above, we obtain Eqs. (A.5.9) and (5.34), respectively. 

E 

VH      ^"m^"'//)' 
(A.5.9) 

and 

M*33«« mH 

F« 

In a similar fashion a derivation of Eq. (5.38) can be obtained.   The starting point is Eq. (5.15), 

*H        #33 *c 

A-   <! ♦ ^ 

I L 

1 + jcoC, 
'■ \zH + zT 

Notice that the form of this expression for I/VH differs from the corresponding equation for E/VH by 
only a constant. Thus all of the steps of the derivation of Eq. (5.34) are equivalent to that for the 
derivation of Eq. (5.38) provided the constant 1/icoNd,-, is replaced by Ac/g„l0. 



Transducer Design and Analysis 89 

Making  this change relative  to  Eq.   (A.5.9) yields  the corresponding general  relation for I/VH 

[Eqs. (A.5.10) and  (5.38), respectively]. 

— = c z 
VH fc331cU,,m*    m' 

(A.5.10) 

and, therefore. 

833h<*nmH 
iz I 

A.6       DERIVATION OF AN EXPRESSION FOR co„ THE FREQUENCY WHICH MINIMIZES 
B2 [EQ. (5.57)] 

In Eq. (5.20) of Sec. 5.2.1 the function B2 was defined as 

B2 = r2i; + (1-mlf, 

where I0 is given by Eq. (5.17) as 

K  =    W Ce   ~  — 

The minimum of B2 with respect to variation of frequency is obtained by taking the derivative of B2 with 
respect to co and setting the result equal to zero. 

Öß, ,    6/ of, 

öco öco ° öco 
(A.6.1) 

and 

6ß2       rir „ .,.«, 

öco 
[r% -m(l -ml0)]2 

öco 
(A.6.2) 

But from Eq. (5.17) 

07. 

öco 
°- = 2uC' (A .6.3) 

Thus, Eq. (A.6.2) may be written 

—1 = [(r2 + m2)I0 - m]4uCe'. 
oco 

(A.6.4) 
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Since we are not interested in the solution cof = 0, we make 8B2/5cc> = 0 by setting the other factor of 
Eq. (A.6.4) equal to zero as follows: 

(r2 + m2)I0 - m = 0 (A.6.5) 

and 

TO 

r2 + m2 
(A.6.6) 

Using Eq. (5.17) for I0 and identifying co( as the angular frequency which solves Eq. (A.6.6) gives the 
desired equation {Eq. (5.57)]. 

<o, 
1 TO 

-e \ r- + m 

_1_ 
w. 

We must still show that (o{ is the value of co which minimizes the value of B2. To do this, consider 
Eq. (A.6.4). Since 4coC^ >0, then the other factor of this equation determines the sign of 8B2/5co. For 
convenience, let D, be the symbol for the other factor; that is, 

Dx = (r2 + m2)I0 TO. (A.6.7) 

We know that at co = co( the value of I0 is such that D, = 0. Examination of Eq. (5.17) shows that as 
co is increased from a value of co = 0, I0 starts out as a negative number and increases, eventually 
becoming a positive number. Thus, according to Eq. (A.6.7), D, and thus, the slope 8B2/8co starts out 
as a negative number, goes to zero at co = coi5 and then the slope becomes positive for co>cO;. Thus, CO; 
is indeed the angular frequency which minimizes B2. 

Notice that since II/VH | is proportional to B2 [i.e., Eq. (5.21)] the frequency coj which minimizes B2 

is also a resonant frequency for | I/VH |. 

A.7       DERIVATION OF AN EXPRESSION FOR I I/V„ I AT co, [EQ. (5.58)] 

The starting point for the derivation of Eq. (5.58) is Eq. (5.16), the basic equation for I/VH assuming 
the simplified radiation model. 

#33 
Y [(1 -mle) + irl0], 

where I0 is given by Eq. (5.17) to be 

co2^ - -1 

Alternately, from Eq. (5.19) we have 
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«331, 

Jr2i; + (1 - mlf 

Recall Eq. (5.59) from the previous section.   It can be solved for mT in terms of the resonant frequency 
CO.. 

JL = ctf - —^— 
e    ' -2   ^  „„2 m. r   + m 

(A.7.1) 

Then for this value of l/mT, 

/    2ril        r>l   2 W 

r   + w 
(Ä.7.2) 

From Eq. (5.19) above we can see that 

H S331, 

[(i-m/o)
2 + r2/2f, (A.7.3) 

83i\ 
[l ~2m/0 + (m2 + r2)/2]1/2, (A.7.4) 

#33 !, [ r+w' 

+ (m  + r~) K-«f)c; .2      ..2\^/ W 
'e 2 2 

12] 1/2 

(A.7.5) 

833K 
1 - 2m(to2 - (or)C( 

2.^/      2m" 
2      2 

+ (w  + r2) /   2        2\2.-,/2         2w     ,   2       2^/ m 
(to2 - co,.) C, + — ;(w2 - co,)Ce + 

r  + m (r2 + m2)2 

11/2 
(A.7.6) 
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H S331, 
(1 - -^ + -A-, ♦ 0»2 ♦ 'V - tfc?T. (A.7.7) 

and finally we have Eq. (5.58), 

/ 

H «331, 

j_^_ + (^ + rV-w?rc^ 

Before we leave this section, it is useful for later derivations to point out that by comparison of 
Eq. (5.58) with Eq. (5.21), we can identify the function B2 as 

Ä, f—, + (m2 + r2)(co2 - t&C?. (A.7.8) 
r   + m 

A.8       DEMONSTRATION THAT THE I I/V„ I BANDWIDTH INCREASES WHEN THE HEAD 
MASS DECREASES AND/OR THE TAIL MASS INCREASES 

For this discussion, Cö; is held fixed (see Sec. 5.2.2.4.1) and the bandwidth of II/VH I is defined as 
the difference between two frequencies. coLi the upper frequency and coL the lower frequency, which 
bracket the fixed resonant frequency CO; 

(0L < (0,. < <o„. (A.8.1) 

The lower frequency is that frequency at which the magnitude of II/VH | m=B  is some multiple (GL) of the 
II/VH I a=a at resonance.  Thus, from Eq. (5.60) we have the following relationship 

G[ 
o = uL 

Similarly, the upper frequency is selected by satisfying Eq. (5.62) 

G 
H 

In this section we show that, in general, for predetermined values of GL and GU; the subject bandwidth 
d)v - coL (©i fixed) increases when the mass of the head assembly, mH, decreases and/or the mass of the 
tail assembly, mT, increases. 

Notice that since II/VH | is minimized at the resonance frequency, co;, then | I/VH I at both the upper 
and lower frequency is greater in magnitude.  Thus, 
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G[ > 1 (A.8.2) 

and 

G'u > 1. (A.8.3) 

As indicated in Sec. 5.2.2.4, the frequency dependence of I/VH is contained in the function B2. Thus, 
Eqs. (5.60) and (5.62) can be re-expressed using, by substituting the definition of B2, Eq. 5.19 to yield: 

" «C* (A.8.4) 

at COy                                at to(. 

and 

at      (Oy at <0(. 

(A.8.5) 

These two equations are more simply stated as 

B2L   = 
/2 (A.8.6) 

and 

B2U  = (7y ß2(. . (A.8.7) 

where B2L = B 2 at <aL, B2U = B2 at cau, and B2i = B2 at ©,. 

Using Eq. (A.7.8) to express B2 at coL, a^, and 

(r2 + m2)«o2 - (o2)2cf 

cöj, we now get 

r- + m"            r" + m" 
(A.8.8) 

and 

(r2 + m2)(4 - i&C? * r2          ni2      T2 

2        2        ü    2        2 * 
(A.8.9) 

\ 

/    2            2,2 
(G? ~ \)r2 

(r2 + m2)2^ 
(A.8.10) 
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and 

(r2 + ro2)2cf 
(A.8.11) 

By definition, coL is the frequency lower than co; which yields the chosen magnitude of II/VH I. Thus, 

(A.8.12) 
("i - to2) = 

,/2 

>j (r2 + mfc! 

and 

(Wy -«;> = + 

N 

«tf l)r2 

(r2 + «tfcf 
(A.8.13) 

For convenience, define M ' as follows: 

M1 

(r* + nr) C, 
(A.8.14) 

Using  M'2 from Eq. (A.8.14), rewrite Eqs. (A.8.12) and (A.8.13) as follows: 

coi - to2 = -JMfi(G?-l) (A.8.12a) 

and 

4 - to2 = ^Mn~(G'v
2-\). (A.8.13a) 

From these last two equations one may make the following observations. As M ' increases, coL 

decreases (moving farther "below" the fixed C0j) and coLi increases (moving farther "above" the fixed ce>;). 
Thus, a bandwidth defined as K>V - coL (for a fixed value of C0j increases as M increases. 

M' can be increased various ways but in this analysis all such changes are subject to the constraint 
of holding C0j fixed; the constraining equation [Eq. (5.57)] is repeated for convenience 

CO, 
1 m 1 

c'\r2 + m2      mi 

From the definition of M ' [Eq. (A.8.14)],  one may write 
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M' = -i- 
C'E r2 + m2 

(A.8.15) 

The last two equations will be used to discuss three cases or ways to increase M' and thus increase 
the subject bandwidth or flatness of II/VHI.  In all cases O; is held fixed. 

Case 1  Fix C, (vary m and mT) 

With both CO; and Cj held fixed, Eq. (A.8.15) shows that M' can be increased by decreasing m. Since 
m = mH + x and for mH + x > 0, one observes that m can be decreased by decreasing the mass of the 
head, mH. Thus, for Case 1, decreasing the mass of the head increases the bandwidth and "flattens" the 
frequency response for |l/VH|. For Case 1, Eq. (5.57) shows that as m is changed mT must also be 
changed to hold co; fixed with C'e also fixed. It turns out (as will be shown) that if m > r then as m is 
decreased mT must be increased to comply with Eq. (5.57) and if m < r then mT must be decreased as mH 

is decreased. For m = r one requires the largest value for mT to comply with a fixed value of (o{ and C,! 
in Eq. 5.62. Since the usual situation is for m > r, then for Case 1 it is concluded that the usual design 
trend calls for a smaller head mass and a larger tail mass in order to flatten the frequency response and 
increase the subject bandwidth GV - ©L for | I/VH |. 

The behavior of the quantity m^r2 + m2) versus changes in m determines what changes in mT are 
needed in the above discussion.  The graph of this function has the general shape shown in Fig. A-l. 

2.5 

1.5 

(5- 
E 

1 - 

0.5- 

I               I               I               I               I               1 

m!= r       I 

/         :                                            iS.      : m>r   : 

/ m < r:                                                                     : ^*"**~--^ 

i                  i                  I                 i                 i                 i 

0.2        0.4        0.6        0.8 1 
m 

1.2 1.4        1.6        1.8 

Fig. A-l — Behavior of the quantity m^r2 + m2) versus changes in m 
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To see this, proceed as follows. 

m 

r2 + m2 m 
bm r2 + m"     (r2 + m2) 2\2 

(2m), 
(A.8.16) 

m 

r" + m" 
bm (r2 + m2) 2\2 

(r2 + m2 - 2m2), 
(A.8.17) 

and 

m 
v + m' 

bm (r* + or) 
- (r2 - m2), 

(A.8.18) 

Thus, as shown in the figure, for m < r the slope is positive, for m > r the slope is negative, and for 
m = r the function has a maximum and the value of the function at m = r is l/2r. 

Case 2  Fix mT (vary m and C,!) 

With both CO; and mT held fixed, it is convenient to solve Eq. (5.57) for Cj obtaining the following. 

Ci-±\ m 
2       2 "> <a,\r' + m- 

J_ 
m. 

(A.8.19) 

Also, use C^ from this last equation to rewrite Eq. (A.8.15) as follows. 

/ r W7 
M' = 

(r- + m") m 1 

r~ + mz      m* 

(A.8.20) 

and 

M' 
w;r 

m + 
r" + m* 

m1 

i\ (A.8.21) 

Again, in Case 2 as in Case 1, one observes [from Eq. (A.8.21)] that M' is increased as m is 
decreased. Thus, once again, the bandwidth and flatness of II/VH I is improved by decreasing the head 
mass.  In Case 2, mT is held fixed so according to Eq. (A.8.19), Cj must be changed as M is changed. 
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As before, using the behavior of m/(r + nr) one concludes that if m > r then as m decreases C^ must 
be increased, and if m < r then as m decreases C, must be decreased and for m = r one requires the 
maximum value for C'e. Since the usual practical situation is for m > r then one obtains the conclusion 
that as mH is decreased, the compliance Ce must be increased to maintain a fixed frequency (in this 
case ©j). 

How would the compliance C^ be adjusted?  Recall Eq. (5.18). 

In the case where C^ needs increasing, one could increase the compliance CF of the FTR. Better yet, one 
could increase the length L of the CSA if geometric constraints permitted, and this would have the added 
benefit of decreasing the electric field 8. One could also decrease the area Ac down to some lower limit 
corresponding to mechanical stress and strain limits. The case where C^ needs decreasing is discussed 
below in Case 3. 

Case 3   Fix mH (vary mT and C'e) 

With both ©j and mH (and, thus, m) fixed one can consider varying mT and C^. Equation (A.8.21) 
shows that M ' can be increased by increasing mT. Thus, it is concluded that the larger the tail mass (with 
mH held fixed and C'e adjusted to hold co; fixed), then the better the bandwidth and flatness of the 
quantities II/VH |. Equation (A.8.10) shows that as mT is increased then the compliance C^ must be 
decreased to maintain the fixed frequency co,. 

How should C^ be decreased as mT is increased? From Eq. (5.18) above, one could decrease C^ by 
decreasing L, but this would increase the electric field. One could decrease Cj by decreasing the 
compliance CF of the FTR up to the limit of removing the FTR entirely. One could further decrease C<! 
by increasing the area Ac, which would, in turn, reduce the mechanical stress and strain. 

Summary 

In summary, one may state that for the usual practical case of m > r then the smaller the head mass 
and the larger the tail mass the better the bandwidth, wu - coL for a fixed c^ and, correspondingly, the 
flatter the frequency response of | I/VH I and I E/VH |. 

In the above analysis, the value of II/VH | at the ends of the frequency band were constrained to be 
proportional to the value at the frequency co = co, [see Eqs. (5.60) and (5.62)]. At o = coi5 | I/VH | is given 
by Eq. (5.59) to be 

v„ 
K 

83Jc\ 

r2 

i        i r* + m 

Equation (5.59) shows that as m is decreased the value of II/VH | at co = coj is increased; that is, it 
requires a higher electric field to achieve a given velocity, VH, and, thus, to achieve a given source level. 
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Thus, as m is decreased to obtain a flatter frequency response, the required current is increased, not only 
at C0j, but at the end points [Eqs. (5.85) and (5.86)]. The current could be held constant by increasing L, 
the length of the CSA, as m is decreased to flatten the frequency response of | I/VH I. However, 
according to Eq. (5.18), one would also have to increase Ac and/or decrease CF in order to maintain the 
desired value of C'e. Thus, any time m is decreased (Cases 1 and 2 above) there is a penalty; namely, L 
and perhaps A0 must be increased in order to not exceed a given current limit. Increasing the length L 
of the CSA usually leads to an encounter with a length constraint for the transducer design. Among other 
things, it is this length constraint that often leads the designer to operate at the highest practical value of 
electric field. 

In Case 3, m (and, thus, mH) was fixed but the tail mass mT was increased in order to flatten the 
frequency response (and Cj was decreased to keep CO; constant). Thus in Case 3, one observes that there 
is no current level penalty for increasing the tail mass, mT, if m is being held fixed. One might ask, 
however, how is Cj to be decreased as required. According to Eq. (5.18), one could shorten L but this 
would increase the field requirement. Instead, L could be held fixed and the area, Ac, of the ceramic 
could be increased to stiffen the CSA (decrease C^). Thus, in a sense, there is also a penalty for 
increasing mT, but increasing the area Ac may be possible whereas increasing the length L (when m is 
decreased) is usually a more severe space constraint penalty. 

A.9       DERIVATION OF AN EXPRESSION FOR I E/VH I IN TERMS OF coci, THE FREQUENCY 
WHICH MINIMIZES B, [EQ. (5.67)] 

The starting point for the derivation of Eq. (5.67) is Eq. (5.64). Equation (5.64) can be used to define 
l/mT in terms of the special frequency coei. 

w 
1       n    2 TO 

r   + m' 
(A.9.1) 

Substituting this into Eq. (5.11) gives 

(co2 - coX + TO 
etJ    e 2 2 rz + TO 

(A.9.2) 

This in turn can be substituted into Eq. (5.13). 

B1 = (r2 + TO
2
) (co2 - coX + -7 

+ 1-2TO#CO
2
 - co*)Ce + 

TO 

(r" + TO ). 

m 

(r2 + TO") 

(A.9.3) 

B1 = (r2 + TO
2

)(CO
2
 - ti&C; + 2TOC>

2
 - <*2J 

m' r2  + TO" 2TO" o     /   2 2,^ 
  - 2TO(CO2 - co£i)Ce, 

(r" + TO")       r* + TO"       (r" + TO") 

(A.9.4) 
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and 

n /  2 2\/    2 2-2/^2 7" 

r2 + m2 
(A.9.S) 

When this expression for B, is substituted into Eq. (5.14), we obtain the expected expression for 
E/VH I; namely, Eq. (5.67). 

1 
<jiNd, 33 

(r2 + m2)(co2 - co*)2 C) +       r 
ei

        c 2 2 

1/2 

A.10     DERIVATION OF THE IN-WATER RESONANCE FREQUENCY, coe [(EQ. (5.76)], FOR 
Is/Vj AND |E/V„| 

This subsection derives the expression for the in-water resonance frequency, <ae, [Eq. (5.76)], of the 
quantities  | E/VH |  and  I e/VH I.   Also included is the derivation of an equation for coe in terms of coei 

[Eq.   (5.77)] and derivation of an equation for | E/VH | in terms of coe [Eq. (5.79)].  As pointed out in 
Sec. 5.2.2.4.2, the equations for | s/VH | are the same as for | E/VH | except for the factor l/coNd33 which 
changes to l/a>Ld33 for the equations involving | e/VH I. 

Equation (5.76) is repeated for convenience. 

w„ 
r2 + (m + mr)2 

^e \    nij(r2 + m2) 

The starting point for the derivation is Eq. (5.14) which is repeated next. 

H (oNd, 
— JBX. 

Proceed as follows. 

H *M 
ß, 

to* 
(A.10.1) 

r H 

6to 

8    — 
1       N to2 

Nd33     6(0 

(A.10.2) 

and 
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6(0 
1      1 

2 Nd. 33 

6 
1 fßll 

>\ (02 

5(0 
(A.10.3) 

But from Eq. (5.13) one writes 

Thus, 

or 

Let 

So 

B, 

w* 
= r v 

\«/ to 
w 

(0 

(A.10.4) 

0(0 

/^6 
r^ 

2r 
V(Oy 

V(Oy 

6(0 
+ 2 

(0 

\6 
w- 

<o 

— - m—- 
jo (0_ 

6ca 

(A.10.5) 

B, 

(0 

6(0 (0 
r £„—i—£ + 

0   0(0 
(1 " mE0) 

— - in- 
to (0 

6(o 

(A.10.6) 

Ö -2 

3 °   6(0 
(1 - mEe) 

— - ni- 
di (0 

6(0 

(A.10.7) 

B, 

(0 

6(0 (0 

(A.10.8) 

From Eq. (5.11) one may write 

^ - »c. - -L 
(o com, 

(A.10.9) 
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Thus, 

101 

(E\ 

6co K + i ^ 

w~w. 

(A.10.10) 

Also, 

1 Eo — - m— 
to co_ 

6(0 to 

En\ 
6-^ 

1 CO 
— + m  

2 6co 

(A.10.11) 

Using Eq. (A.10.10) in Eq. (A.10.11) yields: 

'l ^ - - m—- 
yco co_ 

6(o 

f 1 

CO 
+ m ce 

+ 1    ^ 

wm Tj 

(A.10.12) 

Using Eqs. (A.10.10) and (A.10.11) in Eq. (A.10.7) gives the following: 

5 o Ce  + 
1     ^ 

to W, 
(1 - mE0) 

to" co^m 
(A.10.13) 

and 

ß3 = (r2 + m2) C„ + e -> 
arm. 

\E0 - m 
/ i   \      (1 - ro/y 
C   + e 2 

to*WT to' 
(A.10.14) 

Form the following definitions. 

(1 - mE0) 
B4 j  (A.10.15) 

ß5 = m\Ce + 
1   ^ 

to*W, 
(A.10.16) 

and 

& 
r^     i ^ c + e 2 to w 

*.• 
ry 

(A.10.17) 
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Using these definitions, rewrite Eq. (A. 10.14) as follows. 

B3 = (r2 + m2)B6 - (B4 + £5), 

Use Eq. (5.11) in Eq. (A.10.15) to write 

(Ä.10.18) 

B   _   1        ro 
CO2 CO2 

co2Ce - -1 
m. 

(A.10.19) 

and 

ß„ = —- - roC„ + 4 i        "^e 0 
CO C0~W, 

(A.10.20) 

Also, Eq. (A. 10.16) may be rewritten as follows: 

m B5 = 0 + mCe +     2 
CO w. 

(A.10.21) 

Combining Eqs. (A.10.20) and (A.10.21) gives 

BA + B  = J_ + JUL 
4 5 i i 

co'      co*m. 
(A.10.22) 

and 

Bt ♦ B5 . J. 1 ♦ 2"> 
CO w. 

(A.10.23) 

Also, using Eq. (5.11) in Eq. (A. 10.17) gives 

Bt 
( 1    ^ 
C   + —— e i 

CO"W7 

/ 1   \ 
io2C - 

w7 \ 'i 

(A.10.24) 

5, = co2C; + -£--£ 
1 

'6        w ^e mT      m 2     2 r      (o i»r 

(A.10.25) 

and 

B6 = co2Ce
2 

->     2 co_mr 

(A.10.26) 

Using Eqs. (A.10.23) and (A. 10.26) in Eq. (A.10.18) gives 
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B3 = (r2 + m2) co2c; 
->    2 2 

1   + 
2m 

(A.10.27) 

and 

B, 
(r2 + m2) 

(0 
(o4c; - — e 2 

1 

(r2 + m2) 
(A.10.28) 

Define B7 as follows: 

B, 
»IT r" + m* 

1 + 
2/?^ 

m. 
(A.10.29) 

so 

B, 
r2 + m2 

to* 
— B7. 1 7 

(A.IO.30) 

Combining equations 

E 

l     l l 
6Q 2 M£ 33 

\ 

r   + w B„ (A.IO.31) 

All the quantities on the right end of Eq. (A.IO.31) are greater than zero for all ra > 0 except B7. 
Therefore, the sign of 8 | E/VH I /8co is determined by B7 and this partial derivative equals zero if and only 
if B7 = 0. 

Examination of Eq. (A.10.29) for B7 shows that as co increases from some small value near to but 
greater than zero the sign of B7 starts out as negative, remains negative until for some value of co =coe, 
B7 goes through a value of zero after which the sign of B7 changes and remains positive.   Thus, at coe 

6 (A.10.32) 

0(0 

and one has shown that | E/VH |  has its one and only minimum value at coe.   The expression for coe is 
determined by considering B7 = 0 as follows. 
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and 

/   4,2 1  \ 
"eCe - — 

r2 + m2 
(A.10.33) 

<C]- 
r* + m 2 

(A.10.34) 

2 

uec; 

1 + 2« + (r2 + w ) 

m£(r2 + m2) 

(A.10.35) 

42     r2 + m   + 2mmT + mr 
(j).C. = < 

2,2 2\ wr(r* + w ) 
(A.10.36) 

4   ,      r
2 + (m + mTf 

a>eCe =  
,2/"-2 Wj-Cr^ + m) 

(A.10.37) 

to„ 4 1 r2 + (m + wr)2 

* /   2 2\ mr(r" + w ) 
(A.10.38) 

The desired equation for co^ [Eq. (5.76)] is obtained by taking the square root of both sides of 
Eq. (A.10.38). 

The next goal is to derive Eq. (5.77) which is repeated for convenience. 

CO2, = 0)^1  + M. 

The following previously derived equations  [Eqs. (5.66) and  (5.65), respectively]  are used in the 
derivation. 

1 

where 
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Mx   = m 
*> o 

r- + nr      nh 

For convenience, define M„ as follows. 

M: 
r2 + (m + nij) 

2/  2 2\ mT(r   + m ) 
(A.10.39) 

Comparison with Eq. (5.76) shows that one can write the following. 

1 «,.-JM; (A.10.40) 

It will be shown next that 

1 "> T 
M] = M{ + — 

(2. A\Z r~ + m~Y 
(A.10.41) 

Manipulate M^ as follows. 

M: 
r2 + m2 + 2mmT + m7 Vj   -r   lll-p 

2/   2 2\ mT(rz + m ) 
(A.10.42) 

„2 1 2w 
ml      nijir2 + m2)      r2 + m2 (A.10.43) 

M; = ± + 
2m m' m 

2 /   2 2\        /   2 'V "> ">        /   ^ SO ' rof    w^   + w )     (r* + m~Y     r- + nr     {r~ + m ) 
(A.IO.44) 

Mj l m 

«T      r2 + m2 
+ (r2 + ro2 - m2), 

(r2
+w2)2 ' 

(A.IO.45) 

and 

Af 2 l m 
2   .,  „,2 wr      r^ + m (r2 + w2)2 

(A.IO.46) 

Using the definition of M„ one obtains Eq. (A.l0.4l)as desired. Next use Eq. (A.l0.4l)in Eq. (A.10.40) 
and proceed as follows. 
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CO„ 
2        1 

ce\ 
M?+ 

r 

(r2 + ro2)2 

(A.10.47) 

and 

M, 
w. 

N 
i + 

>2      i 

(r2 + w2)2 M2 
(A.10.48) 

Use Eq. (5.66) and write 

2 2 
<0e   =  (0e(- 

N 
i + 

A \ 

(r2 + w2)2 M2 
(A.10.49) 

Define Mj as follows. 

MX = 
(r2 + m2)2 M2 

(A.10.50) 

Use Eq. (5.65) in Eq. (A.10.50) and continue as follows. 

M2 = 
/   "> 2\i I W 1 (r- + nr)-         + _ 

\2 (A.10.51) 

MX 
I 2 2\2 

m +   
m T    ) 

(A.10.52) 

MX 
2    2 r~mT 

(r2 + m2 + wnü* 
(A.10.53) 

Taking the square root yields Eq. (5.78) which is repeated for convenience. 

r2 + m2 + mm1 

Use of M2 in Eq. (A.10.49) yields one of the desired equations; namely, Eq. (5.77). 
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The next goal is to derive Eq. (5.79) which is repeated for convenience 

E  \_ 

<ssNd, 33   ^ 

(r2 + w2)(coyi + M2
2 - co] 

2 M- i + __r 
4 2 2 

co*      r- + mz 

The starting point for the derivation is Eq. (5.69) which is also repeated. 

E  1_ 
uNd, 33^ 

/  2 2\l    2 2\2      1      J*2 T (r" + 77r)((o' - wri)   — Mj  + —— 
co„ 

One solves Eq. (5.77) for co^ as follows. 

r2 + m2 

w« = "e 

^i + M; 

(A.10.54) 

Use Eq. (A.10.54) in Eq. (5.69) to write 

1 

coM/< 33 N 
(r2 + m2) 

co. *M* 
CO 

{     f^4) 
L(l+M2

2) + -L 
CO. r2 + w2 

(A.10.55) 

Multiplying through by the factor 1 + M^ yields Eq. (5.79) as desired. 

All     BEHAVIOR OF | E/V„ | AT co = coc 

The goal in this section is to show that with mT held fixed, as mH is increased sufficiently (mH > 0) 
then the value of I E/VH | at co = coe can be made as small as desired. The starting point will be 
Eq. (5.79) which is repeated for convenience. 

H wNd. 33  ^ 

(r2 + m2)[^\ + Ml - co 
.2 M{ r2 
   +   

co!      r1 + w2 

At co = co. one obtains 

E 

H 
wÄN 

(r + w%/l + M; - 1 
)2 

Ml 
r2 + m2 

(A.ll.l) 

The quantity under the radical, which shall be called Ble [see Eq. (A.11.2) which follows], determines the 
behavior of   I E/VH |   co = coe as m is increased. 
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Bu = (r2 + m2)t/l * Ml - l) M\ + —?—. (A.11.2) 
r2 + mr 

Rewrite as follows. 

Ble = (r2)(jl + Ml - l) M\ + -J-  + w2(/l + M2 - I)M
2
. (A.11.3) 

Let 

T^r^fiTUZ-lfM*, 'A'11'4) 

r2 

2 2 2 ' 

and 

T2' = m2[sj\ + Af2* - 1) M\ 

Recall Eqs. (5.64) and (5.78) shown below. 

Ti/I W ^     1 M,  =    + — 

and 

M, = T 

r2 + m2 + mm T 

Using this information, one notes the following. 

(A.11.5) 

■*   »2//7TT^_ if"2 <A-"-6> 

lim M,       = —, (A.11.7) 
»- -     /nr 

limM,       =0, (A.11.8) 

lim r,       =0, (A.11.9) 

and 

lim T,       =0, (A.11.10) 
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but 

lim T-       = — (oo times 0). 
m - ■"     mT 

(A.ll.ll) 

If by an application of L'Hospital's rule one could show that lim T3 as i 
the desired goal would have been reached; namely, one would have shown 

li -» oo was, in fact, zero, then 
that lim Ble = 0 and, therefore, 

1 E/VH |  at co = coe can be made as small as desired by making m large 
making the head mass, mH, large since m = mH + x). 

enough (m is made large by 

The last step then is to apply L'Hospital's rule as indicated. 1 

Let T4 be defined as 

(A.11.12) 74 = m(Jl + Ml - l). 

Note that 

T3 = T,Mlt (A.11.13) 

lim T%       = lim M,       lim T. (A.11.14) 

and 

lim T3       = — Um T, (A.11.15) 

Thus, it will be sufficient to apply L'Hospital's rule to the factor T4 as follows.  Lei 

rp                      5 (A.11.16) 

where 

(A.ll.17) T5 = ^1 + M\ - 1 

and 

m 
(A.11.18) 

Applying  L'Hospital's rule, 
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and 

Thus, 

«5  =   1_  
bm      2   r.     772  bm 

2M2     bM2 

^1 + Ml 
(A.11.19) 

bM2 rm-film + mr) 

6w .2 ., ™2 (r2 + m   + m»ij.) 2' 
(A.11.20) 

bM2 _    -1 

6 m       rmT 

rm. 

r* + m* + mm, 
(2m + mr), (A.11.21) 

6Af, 1       , 
  = - — M2 (2m + mT). 
6m rmT 

(A.11.22) 

67^ 

bm 

M, 

rmTJl + M2 

(2m + mr) (A.11.23) 

and 

6T6 1 

m 

Combining this information gives 

(A.11.24) 

liin T,       = lim (A.11.25) 

m2M2(2m + mT), 
lim T,       = Urn 2 r L   „, 

,/T rmTJl + M0 

(A.11.26) 

lim 7, 
rm-, 

lim- 
Jl+M'i 

(lim2m3M^)       + (mrlimm2M2
3)      1,      (A.11.27) 

/m-<» 
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lim7\ 
mi-, 

21im 
rm. \3 

+ m + nu 
m 

Wj-lim 
m 

rnin \3 

+m + m~ 
\ m 

(A.11.28) 

lim TA 
rm. 

-2(0) +(mr)(0), (A.11.29) 

and 

lün T4       = 0. (A.11.30) 

As indicated above, this is the last step in the proof that 

E lim 0. 

A.12  A BANDWIDTH CHARACTERIZATION OF I E/VH I AND I e/VH I IN TERMS OF coel 

Even though coei is not the resonance frequency of I E/VH I (or, equivalently, I e/VH I ) it has proven 
useful, as is indicated in Sec. 5.2.2.6, to approximately characterize the frequency dependence 
characteristics of I E/VH | in terms of coei. Although the general conclusions are similar to those for 

I/VH I, the analysis steps are somewhat different because of the fact 1/co found in the equation for 
E/VH| [Eq. (5.67)] and I e/VH I [Eq. (5.73a)] but not found in the equation for | I/VH | [Eq. (5.58)]. 

There are also some differences due to the fact that I E/VHI and | s/VH I are not a function of the area 
A,. 

The starting point for a bandwidth characterization of I E/VH | uses the constraints explained in Sec. 
5.2.2.6 and embodied in the following equations [Eqs. (5.89), (5.91), (5.90), (5.92), respectively] repeated 
for convenience. 

= G, 
U=<0L 

GL>1, 

= G, 
H 

and 
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*„> 1. 

Next, use Eq. (5.73a) to write out the following. 

1 
V, H (oLW33 \ 

Cmyal-vtfci + ^L 
r   + m 

(A.12.1) 

Also use Eq. (5.74) repeated here for convenience. 

wÄ ^ r2 + m2 

Use Eqs. (A.12.1), (5.74), and (5.85) to write 

"A -\ 
2\2 „2 r* (r^m^l-iolfd* 

r2 + m2    «Äs ^ r2 + m2 
(A.12.2) 

/  2 2\/    2 2\2 „2 r2 _ (r2 + w^jwi - tod) Ce + —  = G, 
2<*L      r2 

r" + wt2 a)2, r2 + m2 
(A.12.3) 

and 

(     2 \2 

4 

«ei 

c,2 + G 2«L 

«i (r2 + m^u^C, 
2\2„4yr2 

(A.12.4) 

Let 

M2 = 
i   2 2\2    4 .-, 

(A.12.5) 

So, 

M 
(r2 + m2WeiCe 

> 0. (A.12.6) 

So in terms of M2 write 
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Y 

2 + M2 = G^M2, 
coe/ 

(A.12.7) 

/coA4 

vw-/ 
- 2 

^co,\2 

\w«/ 

o/co7\
2    , , 

GL —-   M2 + (M2 + l) = 0, 
(O 

(A.12.8) 

and 

'«,V 
to . 

+ (M2 + l) = 0. (A.12.9) 

Use the quadratic formula with 

a = l, 

& = -2 l + 
G£M 2\ 

and 

to write 

c = M2 + l 

'co ^ 

\   «/ 

l + 
G;M2N 

l +^M2 

2 

\2 

4(M2 + l) (A.12.10) 

'*i* 

co . 
l + <#^ 

N 
I + ^M2> (M2 + l), (A.12.H) 

co 

CO . 
l + 

C£M^ 

A 
l + G£M2 + -i_ - M2 - l, 

L 4 
(A.12.12) 

and 
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/co-V 

CO . 
1 + 

GlM* 
:N 

G4 

1 + _£ M4 + M2(C?i - 1). 
4 

(A.12.13) 

Since GL > 1, then G2
L > 1 and G2

L - 1 > 0 and, thus, the discriminate is positive so there is a real number 
solution for Eq. (A.12.13).   Rewrite the last equation as follows. 

'V2 

to 
1 

K\ LM2± _L M4 + M\Kt - 1), 
^4 L 

(A.12.14) 

Note that coL < coei (by definition), so coL/coei < 1, (coL/coei)
2 < 1, and (coL/coei) - 1 < 0. Therefore, one must 

choose the negative sign and write the following. 

(<*A 
\w-/ 

±M2 - 
<?4 

-L M4 + M
2
(G; - i). 

M 4 L 
(A.12.15) 

By similar steps one concludes also the following. 

/CO 
_JL\  - i = -JLM~ + 

Vw^ 

G u M4 + M2(Gi - 1), 
(A.12.16) 

From these last two equations one may make the following observations. As M increases, coL 

decreases (moving farther "below" the fixed coei) and Wu increases' (moving farther "above" the fixed coei). 
Thus, a bandwidth defined as «u - coL (for a fixed value of cod) increases as M increases. 

M can be increased various ways but in this analysis all such changes are subject to the constraint of 
holding coei fixed; the constraining equation [Eq. (5.64)] is repeated for convenience. 

co. 
m 1 

Ce [ r2 + m2 m, 

From the definition of M one obtained Eq. (A.12.6) repeated below. 

r 
M 

(r- + m-)co,,C 
(A.12.6) 

The last two equations will be used to discuss three cases or ways to increase M and thus increase 
the bandwidth or flatness of | e/VH |  and I E/VH I.   In all cases coei is held fixed. 
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Case 1   Fix Ce (vary m and mT) 

With both coei and Ce held fixed, Eq. (A. 12.6) shows that M can be increased by decreasing m. Since 
m = mH + x and for mH + x > 0, one observes that m can be decreased by decreasing the mass of the 
head, mH. Thus, for Case 1, decreasing the mass of the head increases the bandwidth and "flattens" the 
frequency response for I E/VH I and I E/VH I. For Case 1, Eq. (5.64) shows that as m is changed mT must 
also be changed to hold coei fixed with Ce also fixed. It turns out (as will be shown) that if m > r then 
as m is decreased mT must be increased to comply with Eq. (5.57) and if m < r then mT must be 
decreased as mH is decreased. For m = r one requires the largest value for mT to comply with a fixed 
value of coei and Ce in Eq. (5.64). Since the usual situation is for m > r, then for Case 1 it is concluded 
that the usual design trend calls for a smaller head mass and a larger tail mass in order to flatten the 
frequency response and increase the subject bandwidth co,j - coL for |s/VH | and I E/VH|. 

The behavior of the quantity ml(f + m2) vs. changes in m determines what changes in mT are needed 
in the above discussion. The graph of this function was discussed in Sec. A.8 in conjunction with Fig. 
A-l and Eqs. (A.8.16) through (A.8.18). 

Thus, as shown in Fig. A-l, for m < r the slope is positive, for m > r the slope is negative, and for 
m = r the function has a maximum and the value of the function at m = r is l/2r. 

Case 2  Fix mT (vary m and Ce) 

With both coei and mT held fixed, it is convenient to solve Eq. (5.69) for Ce obtaining the following. 

1 

(0 

w 

ei \ r   + m' m T) 

(A.12.17) 

Also, use Ce from this last equation to rewrite Eq. (A. 12.6) as 

M = 
CD, 

(r2 + m2)    2 
to. 

w 
r2 + m2 TOT 

(A.12.18) 

and 

M 

m + 
i       i\ 

m r    ) 

(A.12.19) 

Again in Case 2 as in Case 1, one observes [from Eq. (A.12.19)] that M is increased as m is 
decreased. Thus, once again, the bandwidth and flatness of |e/VH| and |E/VH| are improved by 
decreasing the head mass. In Case 2, mT is held fixed so according to Eq. (A.12.17), Ce must be changed 
as M is changed. 
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As before, using the behavior of m/(r2 + m2) one concludes that if m > r then as m decreases Ce must 
be increased, and if m < r then as m decreases Ce must be decreased and for m = r one requires the 
maximum value for Ce. Since the usual practical situation is for m > r then one obtains the conclusion 
that as mH is decreased, the compliance Ce must be increased to maintain a fixed frequency (in this 
case coei). 

How would the compliance Ce be adjusted?  Recall Eq. (4.18). 

Ce = CF + S33 — . 

In the case where Ce needs increasing, one could increase the compliance CF of the FTR. Better yet, one 
could increase the length L of the CSA if geometric constraints permitted, and this would have the added 
benefit of decreasing the electric field s. One could also decrease the area Ac down to some lower limit 
corresponding to mechanical stress and strain limits. 

Case 3   Fix mH (vary mT and Ce) 

With both coei and mH (and, thus, m) fixed one can consider varying mT and Ce. Equation (A.12.19) 
shows that M can be increased by increasing mT. Thus, once again, it is concluded that the larger the tail 
mass (with mH held fixed and C adjusted to hold coei fixed), then the better the subject bandwidth and 
flatness of the quantities | E/VH | and I e/VH |. Equation (A.12.17) shows that as mT is increased then 
the compliance Ce must be decreased to maintain the fixed frequency coei. 

How should Ce be decreased as mT is increased? From Eq. (4.18), one could decrease Ce by 
decreasing L, but this would increase the electric field. One could decrease Ce by decreasing the 
compliance CF of the FTR up to the limit of removing the FTR entirely. One could further decrease Ce 

by increasing the area Ac, which would in turn reduce the mechanical stress and strain. 

SUMMARY 

In summary, one may state that for the usual practical case of m > r then the smaller the head mass 
and the larger the tail mass the better the bandwidth, au - coL for a fixed coei and correspondingly the 
flatter the frequency response of I s/VH | and I E/VH |. 

In the above analysis, the value of | s/VH I at the ends of the frequency band were constrained to be 
proportional to the value at the frequency co = coei [see Eqs. (5.89) and (5.90)]. At co = coei, | e/VH | was 
given by Eq. (5.74) 

VH 
wA ^ r2 + m2 

Equation (5.74) shows that as m is decreased the value of I E/VH | at co = coei is increased; that is, it 
requires a higher electric field to achieve a given velocity, VH, and, thus, to achieve a given source level. 
Therefore, as m is decreased to obtain a flatter frequency response, the required electric field is increased, 
not only at coei, but at the end points [Eqs. (5.89) and (5.90)].   The electric field could be held constant 
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by increasing L, the length of the CSA, as m is decreased to flatten the frequency response of I e/VH | 
and | E/VH |. However, according to Eq. (4.18), one would also have to increase Ac and/or decrease CF 

in order to maintain the desired value of Ce. Thus, any time m is decreased (Case 1 and Case 2 above) 
there is a penalty; namely, L and perhaps Ac must be increased in order to not exceed a given field limit. 
Increasing the length L of the CSA usually leads to an encounter with a length constraint for the 
transducer design. Among other things, it is this length constraint that often leads the designer to operate 
at the highest practical value of electric field. 

In Case 3, mH (and, thus, m) was fixed but the tail mass mT was increased in order to flatten the 
frequency response (and Ce was decreased to keep coei constant). In Case 3, one observes that there is no 
electric field penalty for increasing the tail mass, mT, if mH is being held fixed. One might ask, however, 
how is Ce to be decreased as required. According to Eq. (4.18), one could shorten L, but this would 
increase the field requirement. Alternately, L could be held fixed and the area, Ac, of the ceramic could 
be increased to stiffen the CSA (decrease Ce). In a sense, there is also a penalty for increasing mT, but 
increasing the area Ac may be possible whereas increasing the length L (when m is decreased) is usually 
a more severe space constraint penalty. 

A.13   DERIVATION OF Ce FOR FIXED END POINTS CONSTRAINTS 

A derivation of Eq. (5.104) for Ce as used in Sec. 5.2.2.6.2.1 is presented. Equations (5.105), (5.106), 
and (5.107), respectively, are repeated for convenience. 

-*>t ( b.\2     (c\ 
c't = - —!- ± -i- - f 

2a,     \ w w 
where 

/   2 2\ /    4 ^4s at = (r- + m"){uL - a'Qv), 

2, 2. b, = -2(<oL - a2Wy) 'r
2 + m2 

m. 
+ m 

1   2 2 <i \ 
  + — + i 

m7 
m. (1 - a2), 

and a was defined by Eq. (5.108) 

a = h 
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The starting point is to use Eqs. (5.101) and (5.103) to form the following ratio 

k2
LL

2       B \L 

k2
vL

2      Bw 
(A.13.1) 

Where B, was given by Eq. (5.13) 

Bx = r2E2 +(1 - mEf, 

andE0by Eq. (5.11) 

E0 = 
( 

mT 

and B1L is B, with co = coL and B„j is B, with co = av.   Similarly, EoL is E0 for a> = ce>L and EoU is E0 for 
©    =    COy. 

Using a from Eq. (5.108), write 

t      *i B XL 

4   Bw 
(A.13.2) 

Use Eqs. (5.13) and (A.13.2) to write 

«2P4 + (1 - mEj] = r2E2
oL + (1 - mEj, (A.13.3) 

«2[(r2 + m2)E2
oU - 2mEoU + l] = (r2 + m2)E2

oL - 2mEoL + 1, (A.13.4) 

and 

,2N/C
2 „2p2 (r2 + m2)(Ez

oL - a2£0V) - 2m(EeL - u2EoU) + (1 - a') = 0. (A.13.5) 

Next use E0 from Eq. (5.11) to form EoL and EoU and continue as follows to form the desired quadratic 
equation for Ce. 

/ 
"oL 

1 \ 
<*ice - — (A.13.6) 

■'oU coI/Ce 
(A.13.7) 

T) 
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(A.13.8) 

(EOL ~ *%u) = K - «2<4)C, - (1 -a2)-*-, (A.13.9) 

also 

(4 - a2E;v) = Lfo 
m7 

J 2 n        1 

m. 

\2 
(A.13.10) 

0 

/c2 2c2 \ 4^2 ^lCe 1 2 (£oL - <t-EoV) = (oLCe -  e- + — -  a2 

I 

ro. m7 

t4r2        2(0 lfe I 
u e ~ ~z— " ~~2 

\ 

and 

(EoL ~ ^Eou) = K - o2wt)Q2 " — (wi - oc2(o2
a)Ce + (1  - a2) 

''iff 

(A.13.11) 

(A.13.12) 

Equations (A.13.9) and (A.13.12) may be used in Eq. (A.13.5) to form a standard quadratic equation for 
C„ as follows. 

aft + btCe + c, =0. (A.13.13) 

The "temporary symbols" a„ b, and c, are defined by Eqs. (5.105), (5.106), and (5.107) above.  Provided 
aj* 0, then use of the standard quadratic formula yields Eq. (5.104) as desired.  If a,= 0, then one has 

(A.13.13a) 

A.14  EQUATION FOR Ce FOR SPECIAL CASE 1 (a = 1) 

To derive an equation Ce for a = 1, one may proceed as follows.  Recall Eq. (5.105) 

/   2 2\/4 2    4.. at = (r- + m")(aL - rw^), 

For a = 1, obtain 
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as = (r2 + m2)(uL - Wy. (A.14.1) 

Recall Eq. (5.106) 

2 2, 2. &  = -2(wL - a2coy) 
'r2 + m2 

+ m 
m. 

For a = 1, obtain 

bf   =    -2(«i   -   COy) 
/    2 2 

+ m 
ro, 

(A.14.2) 

Recall Eq. (5.107) 

ct = 
r2   +   /JI 

m7 

(1 - a2) 

For a = 1, 

c, = 0. (A.14.3) 

These values used in Eq. (5.104) give 

-bt      bt 

e      2at      2a 
(A.14.4) 

Note from Eqs. (A.14.1) and (A.14.2) that bt/2at < 0 and, thus, we must choose the minus sign, giving 

-        ~2b<       ~b' (A.14.4.) 
2at        at 

Therefore, for a = 1, one finds 

2(wt " <4) 
/    2 2 \ 

+ m 
\        mT 

e II 2\/    4 4\ (r* + »r)(wt - coy) 

(A.14.4b) 

or 

2(<*l ~ <Ju) 

(WI   +   <4)(Wi   -   Uü) 

m 

r2 + m2 m. 
(A.14.4c) 

which gives Eq. (5.104a) as desired. 
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ce = 
(       2       \( 

(0L    +    COy 

m 
r~ + »r      w. 

A.15   DEMONSTRATION THAT coL < coej < cov FOR a = 1 

For Special Case 1 (i.e., for a = 1), we wish to prove Eq. (5.113) 

CO,    <    CO    •    <    CO,,. 

By assumption coL < coU5 so 

«1  <   COy, 

2Co£   <    Co£    +    COy, 

(A.15.1) 

(A.15.2) 

but Eq. (5.112) showed 

"t < 
"i    +    Wy (A.15.3) 

co„ 
(Oi    +     COy 

Thus, 

2  ^      2 
coL < coe[. (A.15.4) 

and 

co, < co ■, (A.15.5) 

Similarly, 

2 2 2 2 
Coy    +    COy COy    +    COj, (A.15.6) 

so, 

COy   > 
COy   +    CO (A.15.7) 
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2 2 (A.15.8) 

and 

CO   •   <   00 r, . (A.15.9) 

Combining Eqs. (A.15.5) and (A.15.9) gives Eq. (5.113) as desired. 

A.16  DERIVATION OF EQS. (5.121), (5.123), AND (5.124) 

Recall Eq. (5.101) 

L2k2
L=BlL. 

Recall Eq. (A.9.5)forB, 

B1 = (r2 + »r)(io2 - co;,)2 C; + 
r2 + ,m2 

(A.9.5) 

for co = coL, this gives 

B1L = (r2 + /n2)(<4 - to^2C2 + 
r2 + m2 

(A.16.1) 

However, for Special Case 1 (i.e.,  a = 1), recall Eqs. (5.112) and (5.104a) 

«£    +    OJy 

and 

ce = 
COi    +    00y 

m 

r2 + m2      m T) 

Use these last two equations to rewrite Eq. (A.16.1) as follows: 

BlL = (r2 + m2) m \2( 

2 2 rz + m m Tj 

2          2\2 

WI~ =  
^L + WyJ r2 +/n2 

(A.16.2) 

and 
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*? ■">> BlL = (r + nr) w 1 \2 

i      *> 
r~+m~    nh 

2\2 

(Oy-(dL 

2   ,       2 
(Or   + tO„ 

1 1 

Define [Eq. (5.122)] 

b"a = 
(    2 2\2 

wy-(oL 

COi  +   COy 

(A.16.3) 

Use Eq. (5.122) in Eq. (A.16.3) to write 

B1L = (r2 + nr) 
/ ,    \2 

m 1 
r2 + m2    mTj 

i.2 r 
*«2 +"T- 

r2 + w2 
(A.16.4) 

Use Eq. (A.16.4) in Eq. (5.101) to write Eq. (5.121) 

■ 2,2 /   2 2\ kLL~ = (r" + m ) 
/ m 1 \2 

o o 
r~ + m~    fnT 

12 r* 
^ +-r— 

r" +m 

Now continue as follows to produce Eq. (5.123). 

Rewrite Eq. (5.121) as 

klL2 ( m' 2m      v + m' 

r2 + m2     mT m7 

/ 2         r" 
b,2 +—* r. 

r2 + ro2 
(A.16.5) 

W2 r2 + blm2    (2m      r2 + m2) 

(r2 + m2)       wr 
2 ^2» (A.16.6) 

6* {L2      2m{bl)        (r2*bW) 
— =  2m+ '- + 
im ,2im2 /_2  , „2\2 ÖW r2 + /n2 

(r2 + m2): mr     ml 
b,2> (A.16.7) 

and 

1 ,2 ÖL" _        m 
2 L"ö^"~ (r2+m2)2 f^/2(r2 + m2) ~ (r2 + bf2m

2)) + —f 1 b,2, (A.16.8) 

which yields Eq. (5.123) as desired. 
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m 
2 L Öm " (r2 + m2)2 [*« -»] ♦ £ 

r     m\ 
l + 

m 

m7 

Now consider b^2 - 1 using Eq. (5.122) 

f   2 2? 

'tf 2 2 

where 

2 2   ^ ^       2 2 
toy    -    (0L   <    U„   <    (0L    +    toy, 

toy    -    (Oi   <    CO y    +    COi , 

(A.16.9) 

(A.16.10) 

and 

(Oy    -    COi 

C0L    +    <0y 

< 1 (A.16.11) 

Thus, 

b» < 1 (A.16.12) 

so as desired 

bt, - 1 < 0. 

A.17  EQUATION FOR Cc FOR SPECIAL CASE 2 (a = &J(av) 

To derive an equation for Ce for Special Case 2, one may proceed as follows.   Special Case 2 is 
equivalent to Eq. (5.127) 

co, 

to, 

Recall Eq. (5.105) 

at = (r2 + m2)(ut - ortOy). 

For a = coL/coU5 obtain 
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at = (r2 + m2) 4 CO L      4 
CO,, 

(0, 

(A.17.1) 

or 

/  2 2\l    4 2    2\ a, = (r* + »r)(coL - (OiCOy). (A.17.2) 

Thus, 

a, = (r2 + wVijcOi - Wy). (A.17.3) 

Note that since coL < cou? then -a, > 0. 

Recall Eq. (5.106) 

bt = _2(ui " a2«4) 
(   2 r   + m 2 \ 

+ m 
v    mr 

For a = <£>L/(£>U, obtain 

*>,' 

( 2 ^ 
2 wi      2 

/    2 2 

+ w 
V     mr 

(A.17.4) 

Thus, 

fc, = 0. (A.17.5) 

Recall Eq. (5.107) 

(r2 + m2      2m     ,) + — + l 

mT 
mr 

(1 - oc2) 

For a = (oL/cou, obtain Eq. (A. 17.6) 

I     2 2 r> \ f + m       2m   + — - 1 
2 mT 

mn 

2 

1   -   — 
2 

(A.17.6) 

These values [Eqs. (A.17.3), (A.17.5), and (A.17.6)] used in Eq. (5.104) gives 

c, c = ± / 

\ ~at 

(A.17.7) 
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Since Ct > 0 and -a, > 0 and Ce > 0, one chooses the positive sign; therefore, 

C   = + 
-a. 

(A.17.8) 

Using Eq. (A. 17.3) for a, and Eq. (A. 17.5) for ct gives 

ce = 
\ 

r2 + m+ 2m     1 

2 
Itlj m. 

1 - — 
2 

CO V 

2x.  2 (r2 + m2)((0y - to^co^ 

(A.17.9) 

or 

'N 

l   2 r- + m" 

m7 

2m      , 
+ — + 1 

\ 
1 

/ 

1 
+ 

COy    ~    CO 

to,, - CO, 
2    2 » 

(A.17.10) 

which gives Eq. (5.104c) as desired 

corco LWU\ 

(   2 2 <■> \ 1 r   + m       2m     1        1 
mT nu r2 + m2 

A.18  DERIVATION OF 5Blc/5mT FOR SPECIAL CASE 2 

The starting point for the derivation of an equation for SBle/8mT was Eq. (5.13) for B,. 

B, = r2E2 + (1 - mEf   . 

Recall that B]e [see Eq. ( A.11.2)] is B, for co = we.  Thus, 

Bu = r~E;e * (1 - mEj   , 

where Eoe is E0 for co = coe 

SB, „      ÖE ÖE 
_i£ = 2r2£   —SL - 2m(l - mEJ—2 
bmT 6mT bmT 

(A.18.1) 

(A.18.2) 

and 

SB bE 
£ = 2f(r2 + m2)Eoe - ml-   oe 

bm bm7 

(A.18.3) 

Define Fe, as 
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Recall Eq. (5.11) for E0 

Fel = (r2 + m2)EM -m. 

E   = u2C 
»!, 

(A.18.4) 

so, 

E    = ulc   - — oe       ™r« m7 

(A.18.5) 

Recall Eq. (A. 10.40) 

to. 
2 1    /     2 

][M;- (A.10.40) 

Thus, 

Use Eq. (A. 18.6) in Eq. (A.18.5) to write 

<Ce = Me 

En=M-—, 
e     mT 

Use Eq. (A. 18.7) in Eq. (A.18.4) to write 

Fel = (ra + nr) Me - — w, 

(A.18.6) 

(A.18.7) 

(A.18.8) 

Next, recall Eq. (A. 10.46) 

Mt (l m \2 

"> -> ynT     r~ + m~) (r2 + w2)2 

Thus, 

(r2+m2)2M2 
I   2 

m" 2 

\   "h 
(A.18.9) 

and 
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a ^.„2 (r'+m*)Me 

I i      i \2 
+ m 

mT 

+ r' (A.18.10) 

Use Eq. (A.18.10) in Eq. (A.18.8) to write Eq. (5.131) (reprinted below) as desired 

F.i' 
\ 

' r~ + m* Y 
+ m 

m. 
+ r 

I i       "> \ 
2     \rl+m~ + m 

m. 

It should be noted that Fel > 0 for all values of mT and m. 

At this point, we now have [from Eqs. (A. 18.4) and (A. 18.3)] 

ÖB le 

öm. 
IF, le 

?5= 
öm, 

We need an expression for 8Ece/5mT.   Using Eq. (A.18.7) above, write 

&Eoe ?>Me    .      1 

6mT      ömT      WJ 

(A.18.3a) 

(A.18.11) 

Use Eq. (A. 10.46) to form 5Me/8mT as follows 

ÖM„ 

öm, 

(A.18.12) 

öM, 1 
ömT      IM 

m 

e   \mT r" + m* 2 mT 

(A.18.13) 

and 

ÖA^ = zi 

ömT     Me 

m 

ymT     r" + nj' m7 

(A.18.14) 

Use Eq. (A.18.14) in Eq. (A.18.11) to write 
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oe 

bmT 
2 

mT 

1 - 1 (l 
M. 

m 
vwr r2 + m2 

(A.18.15) 

or using Eq. (A. 10.46) for Me 

bE oe 

bmT m"T 

m 
ymT     r- + m' 

m \2 

m T     r" + m* (r2 + m2)2 

(A.18.16) 

If one identifies F„7 as 

bE 
F     = oe 

el        "i        > bmT 

(A.18.17) 

one obtains Eq. (5.132) as desired.   It should be noted that Fe, > 0 for all values of m and m-, 

A.19  DERIVATION OF 8BIC/5m FOR SPECIAL CASE 2 

Thus, 
The starting point for the derivation of an equation for 5Ble/5m was Eq. (A.18.1) (see Sec. A.18). 

™u =  6[r24 + (1 - mEf\ 
bm bm 

(A.19.1) 

bB 
-Jl = 2r%e^-2(1 -mE)^, 
bm oe bm "' bm 

(A.19.2) 

but 

bmE„ 

)m 

1     wo 
E+m     ° 

bm t 

(A.19.3) 

so 

1ÖB, 

2 bm 

bE 
e   _   _2i7 oe 

rE"-bm- 

I 

(1 - mE0) 
bm j 

(A.19.4) 

and 
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j n fr 

A_J£ . f(ra + m2)£;    - ml—2 - £ (1 - mEJ, 
2 6m       [ > oe        \ 6m oe^ 

(A.19.5) 

Recall Eq. (A. 18.7) 

thus, 

Recall Eq. (A.10.43) 

£    = M   - — e     mT 

Woe        *>Me 

bm       bm 
(A.19.6) 

M: 1 2m 1 
*> X 0 0 

m'      mj(r- + m~)      r* + m* 

or 

M, = 

N 
-L+& + 1 
m'T     VniT r2 + m2 

(A.19.7) 

so 

öAf 1 
bm       2M„ 

2 1 

mT r2 + m2 

(im \ 2m 
m. 

+ 1 
2m 

/   2 2\2 (rz + m ) 
(A.19.8) 

6M„ 

öm       Af(r2 + w2)2m. 
2 2 2W   ±   1 r   + m   -   — + 1 

m-r 
mm-, (A.19.9) 

öAf 1 0-2 

Öm       mTM (r2 + m2)2 
(r* + m" - 2m" - mmT), (A.19.10) 

ÖM„ t 0 

bm      mTM(r2 + m2)2 
(r* - m" - mmj), 

T'"c' 

(A.19.11) 

and 
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ÖAf,       r~ - m{m + mr) 

öm mTMe(r2 + m2)2 
(A.19.12) 

Use of Eqs. (A.18.7) and (A.19.12) in Eq. (A.19.50) yields a general expression for 1/2 8Ble/5m. 
However, due to the apparent complexness of the general form, only the special case where mT -> oo was 
given consideration. 

If 2m/mT « 1, then Eq. (A.19.7) becomes 

M. 
1 1 

— +   

\\ m\      r2 + m2 
(A.19.7a) 

If 1/m2 « 1/r2 + m2, then 

M. 
> yV2 + m2 

(A.19.7b) 

Under these same conditions, 

oe e 

^ + m' 
(A.18.7a) 

and 

ÖM. m m 

öm       M(r2 + m2)      (r2 + m2)3/2 
(A.19.12a) 

Using these approximate values in Eq. (A.19.5) yields 

2   6ro 
(r2 + m2) 

\jr2 +m2 
m -m 

(r2 + m2)3/2 
/r2—2 /r + m 

m 

{     ylr2+m2 

(A.19.5a) 

and 

1 *Bu _ -1 
2 6m     (r2 + m2)3/2 

m •fi^m2 - m2 + (r2 + m2) m 

V     V^+w2. 
(A.19.5b) 

or Eq. (5.133) as desired. 

öß le -2r2 

6 m       (r2 + m2)3/2 

Eq. (5.133) may also be derived directly from Ble with mT = oo. 
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A.20  DERIVATION OF EQS. (5.134), (5.135), AND (5.138a) 

Recall Eq. (5.134) 

,2,1 2 
hL' =r 

 Me  -  — 

\2 

\ - m 
WIw l M2 

-M. 
\*u Ttlt 

The starting point for deriving Eq. (5.134) is Eq. (5.101) reprinted here. 

For BlL, recall Eq. (5.133) 

KL2 = BlL. 

Bl = r2E2
0 + (l - m£0)

2 

Evaluate B, at co = coL to yield 

B1L = r%L + (l -mEoI)\ (A.20.1) 

where EoL is E0 with co = K>L. 

Recall Eq. (5.11) 

E0 = co2Ce m1 

so 

£
0i  =   "lCe   -  — m. 

(A.20.2) 

However, for Special Case 2, recall Eq. (5.104d) 

-M. e e 

Thus, 

 M (A.20.3) 

and 

CO, 1 
EoI = —-Af   - — 

coy mr 

(A.20.4) 

Use of Eqs. (A.20.4) and (A.20.1) in Eq. (5.101) yields Eq. (5.134) as desired. 
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Next, we derive Eq. (5.135) repeated for convenience. 

k2 bL2   = _2_ "i 
1 ömT     ml °« 

r~ + m" 
+ m' (Fu) 2L 

(0, 

Start with Eq. (5.101) (repeated above) and write 

,2ÖL2      «fin 
ÖWr Öfftj. 

(A.20.5) 

Next, use Eq. (A.20.1) to write 

bB 

bm 

bE 11 - 2r2E..,^± - 2m(l - mEJ-^01 
"oh bm-, ~

OL)
 bnu 

(A.20.6) 

or 

£ ■ 2^ir - -^ - -: (A.20.7) 

Use Eq. (A.20.4) and write 

6wr      uiu bmT      n\ 
(A.20.8) 

Recall Eq. (A. 18.14) for 5Me/Sm., 

6M, = _j_ 

bmT       M„ 
( 1 m 

m T     r" + m' 2 
mT 

Use Eq. (A.18.14) in Eq. (A.20.8) 

bE. oL 

bm. 2 

wt   1 ( 1 
W(/Me 

W 

wr      r2 + w2 
/j 

(A.20.9) 

Define F1L as 

r*- i - _^_L 
<*UMe 

m 
m. i       i r* + m 

(A.20.10) 

Use Eq. (A.10.46) for Me in Eq. (A.20.10) and obtain Eq. (5.136) (reprinted here) 
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F*°  l 

co, 

CO, 

m 

mT     rz + m1 

N 
m 

xmT r2 + m2 2\2 (rz + mz) 

Note that since co^cou < 1, then Eq. (5.136a) is obtained. 

Use Eq. (A.20.10) in Eq. (A.20.9) to write 

t>E. oL 

bm if 
T Mi 

(A.20.11) 

Use Eq. (A.20.1)l in Eq. (A.20.7) and write 

6ro T      m, 
(A.20.12) 

For convenience, define FtL as 

and write 

\ = [(r2 + m2)EoL - m 

ÖfilL 2 

6 m 1 Mnt • 
t      m1 

(A.20.13) 

(A.20.14) 

Note that since FlL > 0 [see Eq. (5.136a)], the sign of 8BlL/5mT is determined by FtL. Therefore, continue 
manipulating FtL as follows.   Use EoL from Eq. (A.20.4) and write 

FtL = (r2 + m-)-±Me - [rLlJ^L + m 
.*UL, 

CO, m. 
(A.20.15) 

Recall Eq. (A.18.10) 

■"» ->. 

(r~ +m~)Mp 

N 
+ r 

Use this in Eq. (A.20.15) 
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CO, 

tl 
CO u\ 

I   1 -1 

+ m 
V    nh 

+ r (r + m" + m 
m. 

(A.20.16) 

or 

wi /V2 + m2 

rt co, 
+ m 

w. 

N 

i + 
CO, 

r" + m 2 \2       C0Z 

- +m 
Tlln 

(A.20.17) 

Define F2L as follows to obtain Eq. (5.137) 

FZL = 

N 

1 + 

I r- + r~ + m" \2 

+ m 
m. 

Thus, 

CO 
F    = —- L\r~ + m \, 

+ w 
coyi     mT 

2i 

CO, 

CO, 

(A.20.18) 

Use Eq. (A.20.18) in Eq. (A.20.14) 

6B \L 2   «i {   2 r- 

bmT      mT coy 
r~ + m' 

m. 
+ m 

( 

) V 
P     -   u 1 or   2i 

CO, 

(A.20.19) 

Eq. (A.20.19) used in Eq. (A.20.5) yields Eq. (5.135) as desired. 

Next, we derive Eq. (5.138a).   Start with Eq. (5.138). 

Ft 2L 

CO, 

CO, 
;> 0. 

UseEq. (5.137) 

^ 

CO 

<r2 + m2 V 
^*0. 

+ m 
\       mT 

CO, (A.20.20) 

Continue manipulating as follows: 
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1   + 
I   1 1 r   + m \2 

+ m 
w, 

co, 

CO, 
(A.20.21) 

r" + m V 
+ m 

m7 

co, 

co, 
(A.20.22) 

i rz + m* 
+ m 

»In 

co, 
-i ~ L 2 (A.20.23) 

r" + m' + m 

N 

co, 

CO, 

(A.20.24) 

w, r* + m' 
- m 

IN coT 

(A.20.25) 

which yields Eq. (5.138a) as desired. 

m, 
m 

r* + »r ro 
co, 

N co, 
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A.21   DERIVATION OF EQS. (5.147) AND (5.149) 

Recall Eq. (5.147). 

c 
NAcd33 

T~    S33K   ' 

The starting point for derivation of Eq. (5.147) is the definition of the low frequency capacitance CT 

for the N ring CSA. Since the N rings are wired in parallel, CT is N times the capacitance of one of the 
ceramic rings (all assumed to be identical).  For one ring, the capacitance is Acz]3/lc. Thus, forN rings, 

T 

CT= 
NA^\ (A.21.1) 

One important piezoelectric ceramic parameter relation is as follows: 

S33 = ~f • (A.21.2) 
€33 

Thus, 

=33 -T   -   2!. (A.21.3) 
£33 

Use of Eq. (A.21.3) in Eq. (A.21.1) yields the desired result; namely, Eq. (5.147) above. 

Next, recall Eq. (5.149). 

0       0 

(<*Nd33)
2 

The starting point to derive Eq. (5.149) is to compare the defining equations for E0 and I0 [Eqs. (5.11) 
and (5.17), respectively]. 

and 

E   = Q2C   - — 0 e 

We need an equation relating Ce to C^.   Recall Eqs. (4.18), (5.18), and (4.4) reprinted below 



138 Carson and Waiden 

and 

Ac 

Ce  = ^33 "7"   +  *"F' 

^33   = ^33       #33 "33 • 

Use Eq. (4.4) in Eq. (4.18) and write 

C.-(^+*33 4ö)T+C' 
(A.21.4) 

and 

Ce ~ P33 "T"  + ^F + s33 4 33 
(A.21.5) 

Note from Eq. (5.18a), we may rewrite Eq. (A.21.5) as 

Ce =  C'e  + #33 <*33 7" (A.21.6) 

Note:   Eq. (A.21.6) is equivalent to Eq. (4.5a). 

Use g33 from Eq.( A.21.2) in Eq. (A.21.6) to write 

Ce = C'e + J33 - 
Ace33 

(A.21.7) 

Rewrite as follows: 

,     Nd3i L 
c = c: + —— 

NAce33 

(A.21.7a) 

Recall Eq. (4.3) 

L = Nl 

Rewrite Eq. (A.21.7a) as 
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ce = c'e + w24— 
NA/33 

(A .21.8) 

Use Eq. (A.21.1) for CT in Eq. (A.21.8). 

c = c + e e 
i . w33? (A.21.8a) 

Use Ce from Eq. (A.21.8a) in Eq. (5.11)  to write 

Me - J- 
x      (coiVc/33)2 

(A.21.9) 

Using the definition of I0 from Eq. (5.17) in Eq. (A.21.9) yields the desired results; namely, Eq. (5.149). 

A.22  DERIVATION OF EQ.  (5.152) 

Recall Eq. (5.152) 

U}",C7 

2/2 2N 

«i (°v - *>ü) 

The starting point for the derivation of Eq. (5.152) was Eq. (5.151) 

1 
2  r> (o ,CT n     r 

i  _   (un,Nd33?        mH 

CT      (1 - mj0) 

with I0 evaluated at co = «v  In Eq. (5.151), recall that (o = co„,.  First, we show that 

m. 2   mHmT 1 

(1 - mj0) ' '"" mH + mr j^
2, _ <^ 

(A.22.1) 

To do this, recall ©n (the in-air resonance frequency from I/VH) was given by Eq. (5.27) 

<o„ 
1  ("_1_ + J_ 

niH      mT Ci e \ 

thus, 
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c:-± (i    n 
OnVWff mT, 

(A .22.2) 

Use C'e from Eq. (A.22.2) in Eq. (5.17) (reprinted here for convenience) 

m1 

to yield 

(0 

0l(J=O  / 
(0 n\ 

_L + _L 
m. 

(A.22.3) 

Use Eq. (A.22.3) to write the following: 

"H 

1   " «j/o 

m H 

(0 =0>   / 

m   ifj- + -L m. 

m, 

(A.22.4) 

m. 

1    "   »i/o 

m. 

(0^        co~  wr       mr 

(A .22.5) 

w. 
1 - »'//„ 0)=<i)   / 

m. 

™Jo (0=U   / 

(A.22.6) 

(A.22.7) 

and 
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m. 
1 - »*//„ 

2    mHmT 

u=o / "K + mr) (al - wj,) 
(A.22.8) 

Multiplying the right side by -1/-1 and rearranging yields Eq. (A.22.1) above. 

Second, show that 

(un<Nd33f _   i   «;, (mH + mT),  2        2, 

(0*   G)^        W^Wly. 

(A.22.9) 

To do this, recall Eq. (5.28) 

(O 

w„ C 

and Eq. (A.21.8) 

c  = C' +       33 

Use Ce from Eq. (A.21.8) in Eq. (5.28) to write 

—i = i + * (iVt/33)~ 
2 ril       C 

(A.22.10) 

Rewrite Eq. (5.27) as 

(0 
,    m# m j. 

c'       " (tnH + mr) 
(A.22.11) 

Use 1/q from Eq. (A.22.11) in Eq. (A.22.10). 

—   =   1   +   C0„ 
mw mr     (Nd33)

2 

(m„ + mj.)     Cr 

(A.22.12) 

or 
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W33)
2 1   (mH + mT) 

co„ (mHmT) 
^-1 (A.22.13) 

or 

(ML)2 1     (mH + mT) , 2       2\ 
 1 r K" WJ' 

w«wm 

(A.22.14) 

Multiplying both sides of Eq. (A.22.14) by coj;, yields Eq. (A.22.9). 

Third, use Eqs. (A.22.9) and (A.22.1) to write 

(w„'^33)
2      mg wn(o*/ {ma + m^, 2      2\ mHmT 

Cr       (1 - m^)       W2W2    (m„ wr) \(°"   W^ mH + mr ^ _ w<|) 
(A.22.15) 

or 

(un,Nd33)
2       mH 

CT      a-mj} 

/^2     /     2 2\ 

2/2 2\ 

with I0 evaluated at co = con. 

Use the results of Eq. (2.16) to rewrite Eq. (5.151) as follows: 

1 
2 n 

n     ' 

it oo 22 22 

<•>*(<">"/ - <«V 

which yields the desired result; namely, Eq. (5.152). 

A.23   DERIVATION OF EQ. (5.153) 

Recall Eqs. (5.153), and (5.154), respectively. 

(A.22.16) 

(A.22.17) 

*33 K 

(. 
1   - 1 

(oTCT 

ml0i 
+ irlA, 

where 
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h> = h  ~  — 
°      °    (o2rcT 

The starting point for the derivation of Eq. (5.153) was Eq. (5.142) (reprinted here) 

l±- =^-[(1 -ml0) + irl0] + Tl-_L_[r£o-i(l -mE0)]. 
VH   g33lc zur (oNd33 

First note that 

1 Ac     833K 

*>#<*» £33*0 ^V33 
(A.23.1) 

Recall Eq. (5.147) 

CT = 
NArd. C"33 

«331« 

Thus, 

1 ^c      1 
<oMf33      g33lc Cr 

(A.23.1 a) 

Use Eq. (A.23.2) to rewrite Eq. (5.142) as 

l[ -  Ac-[(l-mI0) + irIo]+ .  ^    ^ [rE0-i(l-mEJ\ 
*H     833} c mrcTg33\c 

(A.23.2) 

or 

— = —- J[(l - ml) + irl] + —— [r£ - j(i - W£)] j (A.23.3) 

or 

A       ./L 

*H     #33 *c 

l-m/0-
(1-"^ 

cora 
+ ir 

fi 

ore, 
(A.23.4) 

or 

li   _   ^c 

*ff     #33^ 

1-- 
L \ 

«re, 
m 

£„ 

wrc, 
+ ir 

I0      "rCrJ 
(A.23.5) 

Using I„ as defined by Eq. (5.154)  yields the desired results; namely, Eq. (5.153). 
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A.24  DERIVATION OF EQ. (5.171) 

Recall Eq. (5.171) 

= (oC, Kf ("«- *2) 
°J (»i -»2) 

The starting point for the derivation of Eq. (5.171) was Eq. (5.169) 

1 = 1 
Z      E 

or 

1 -2* 
Z        E 

(A.24.1) 

Recall Eqs. (5.10) and (5.16), respectively. 

E 1 

and 

VH      aNdx 
[rE0 - i(l - mEj\ 

I K 

'H        #33* 

-[(l-ml0) + irIJ. 

So, 

In-air r = 0 and m = mH, so 

or 

_1   =  <*NAcd33    [(l-ml0) + irl0] 

Z "     £33^    [^ - i(l - mE0)] 

aNAcd33(l - mHI0) 

«CO 
NAcd33 (1 - mfl/J 

ft3lc   (1 - mHE0) 

(A.24.2) 

(A.24.3) 

(A.24.4) 

Recall Eq. (5.147) 



Transducer Design and Analysis 145 

CT = 

NAd, c"33 

#33 *c 

Thus, 

z'coC, 
(1 - mHI0) 

(! - mHE0) 
(A.24.5) 

Next, recall Eq. (5.149) 

En = L + 
0       0 

(<»Nd33)
2 

Thus, 

h'Eo 
(coAtf„)2 

(A .24.6) 

Equation (A.24.6) used in Eq. (A.24.5) yields 

icoCT 

1 - mHE0 + mH 

(<»Nd33)
2 

(1 " mHEJ 

(A.24.7) 

or 

= JwC, 1 + 
(aNd33)

2        mH 

CT      (1 - mHE) 
(A.24.8) 

Recall Eqs. (5.11) and (5.24), respectively 

/ 
ia'C. - — 

mT 

and 

2        1 

So, 
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c --L e 2 
\mH mT) 

(A.24.9) 

Use of this Ce in Eq. (5.11) gives 

Thus, 

So, 

or 

or 

or 

Recall Eq. (A.22.14) 

E-<*- 
(0 m \ 

_L   +  _i 
mH     mTj m7 

(A.24.10) 

CO*  ( mH 
tiO 

00 m \ 
w. 

ml 

m7 

(A.24.11) 

1 - mHEo 1 + —H- 
m Tj 

CO 

co„ 
1.^ (A.24.12) 

1 - mHE0 = 1 + 
nit 

m. 
\ ' i 

( 2 

2 
(A.24.13) 

m H mH n\j \ 

1 - mHE0 (mH + nij) L _   to 

to„ 

(A.24.14) 

m. 
= to„ 

mff »Jr 

(1 - mHE0) (mH + mr) (<£ _ ^ 
(A.24.15) 

(Nd33)
2 1     (mH + mT) , 2        2 

W«Wm 
(m 

1   '"7-7 /    2 2\ 
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So, 

((oAtf33)
2        w2    (mH + mT) .  2 

(o>:    Kwr) 
K - «3' (A.24.16) 

Use of Eqs. (A.24.16) and (A.24.15) in Eq. (A.24.8) gives 

= icoC 
+ o)2^ (mg + mr)     mHmT    ((o2, - co2) 

co>2    (w*wr)    K + wT) (w2 - w2) 

(A.24.17) 

and 

J. 
Z, 

1 
z 

in-nir 

icoCr 5 

in-air 

22            2    1            2i           22 

2/2           2\ 

iwC, 
2    2 22 

«2(<">» - <°2) 

(A.24.18) 

(A.24.19) 

(A.24.20) 

Factoring out com in the numerator yields the desired results; namely, Eq. (5.171). 
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Appendix B 

PRACTICAL ILLUSTRATIONS OF THE SGM ANALYSIS 

BO       PRACTICAL ILLUSTRATIONS OF THE SGM ANALYSIS 

In an effort to insure a clear understanding of several key expressions presented in Sec. 5, this appendix 
presents graphical illustrations of these analytical results using a simple SGM-based computer program 
(with various subroutines) written in Matlab*, a numeric computation and visualization software package. 
By design, these programs make use of the fundamental expressions of the augmented SGM [primarily Eqs. 
(5.10) and (5.16)] and do not make use of the other pencil and paper derived equations in Sec. 5. (In order 
to distinguish between the equations used in the SGM-based numerical model and the other pencil and 
paper derived expressions, this appendix refers to the latter category of expressions as "insight oriented" 
design aid equations.) If we find that the numerical computer predictions agree with the corresponding 
insight oriented predictions, then this fact can be taken as a strong indication that there were no significant 
errors in the Sec. 5 analysis. 

In order to apply the subject SGM-based computer program, a specific transducer model had to be 
produced. For this purpose a simplified version of the TR-330A (a Navy fleet sonar transducer) was 
chosen as the transducer to model. The resulting model is referred to below as the "STR-330A" model 
as a reminder that the STR-330A model is vastly simplified compared to the complete TR-330A model 
used in previous performance predictions, which should be used in any future quantitative performance 
predictions for the TR-330A. Please remember, as has been emphasized throughout this report, the STR- 
330A Model predictions need only agree qualitatively (not quantitatively) with the design insight data 
derived from the complete TR-330A model and/or experiments. In those cases where there is also good 
quantitative agreement, this fact represents an unexpected extra confidence factor. 

This choice of using a simplified version of the TR-330A as the transducer to model in the SGM-based 
computer model was made for two reasons: 

1. A great deal of theoretical and experimental TR-330A data exists (for example, see the STRIP 
reports) for comparison with the data produced using the STR-330A model. 

2. All TR-330A data is UNCLASSIFIED, making it much more useful for our purposes. 

[Note that because the graphical illustrations to be presented and discussed in this appendix 
are designed to facilitate a better intuitive understanding for the reader, the angular 
frequency symbol © (rad/s) given in the text will represented in linear frequency units 
(Hz).] 

The reader will find that results of the numerical predictions to be presented compare remarkably well 
with the results found using the insight oriented design aids derived in Sec. 5. They also have shown to 
enhance the clarity and understanding concerning the use of the SGM design aids. 

149 
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B.l    THE IN-WATER SGM RESULTS OF THE STR-330Ä TONPILZ TRANSDUCER MODEL 

We will begin testing the simplified model presented in Sees. 5.1 and 5.2 by graphing various 
quantities that are pertinent to the electrical and acoustical performance of the TR-330A transducer. This 
transducer consists primarily of an aluminum head mass, a steel tail mass, four PZT-4 (Navy Type I) 
piezoceramic rings, and two GE-11 fiberglass tuning rings, one located at the front of the ceramic stack 
and the other near the rear of the ceramic stack. Specific transducer properties employed in the 
performance calculations are given in the following list: 

d33 = 302.2 x 10-12 m/V (piezoelectric charge coefficient of ceramic ring) 

g33 = 24.9 x 10-3 Vm/N (piezoelectric voltage coefficient of ceramic ring) 

S33 = 15.5 x 10-12 m2/N (elastic constant for ceramic ring) 

S33 = 8.216 x 10-12 m2/N (elastic constant for ceramic ring) 

Ac = 8.8674 x 10-4 m2 (electroded area of ceramic ring) 

lc = 0.01090 m (length of ceramic ring) 

N =4 (number of ceramic rings in CSA) 

S33f = 114 x 10-12 m2/N (elastic constant for fiberglass tuning ring) 

Af = 0.0019 m2 (area of fiberglass tuning ring) 

lf = 0.0028 m (length of fiberglass tuning ring) 

mH = 0.568 kg (head mass) 

mT = 1.53 kg (tail mass) 

In addition to these transducer quantities, the radiation loading effects of the medium were also required. 
Referring back to Eq. (5.4) in Sec. 5.2, we find that the radiation impedance, Zn is given by 

Zr = R + iX. 

For the purposes of the design simplification, it is assumed that this function can be represented by 
quantities, R and X, that have a linear dependence with frequency [Eq. (5.5)]. 

R=rv)   and  X=x<a. 

First, realistic values for the radiation resistance constant, r, and the radiation reactance constant, x, 
need to be determined for the in-water loading condition. In order to accomplish this, the transducer is 
assumed to have the same radiation impedance as that of a baffled circular piston of radius, a, given by 

Zr= pc% a^Rfika)- Xfika)], (B1) 
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with 

27,(2*0) 2HA2ka) m ^ 

where J,(2ka) and H,(2ka) are the Bessel function and the Struve function of the first order. 

Upon calculating the transducer's impedance over the desired frequency bandwidth of 5,000 Hz 
(31,416 rad/s) to 15,000 Hz (94,248 rad/s), the mid-band impedance at 10,000 Hz (62,832 rad/s) is chosen 
to represent radiation impedance constants in the simplified transducer model. (However, if we wanted 
to use this numerical model in an actual transducer design, we could easily modify the model to use the 
exact impedance function over the frequency range. This was not done in the following analysis, since 
our purposes were to verify the Sec. 5 transducer design aids.) Specifically, the impedance constants at 
10,000 Hz are determined to be: 

r = 0.2447    «f    x = 0.0953. C8-3) 

Now that all the needed baseline transducer parameters have been determined, we can make some 
pertinent transducer performance calculations, such as the input voltage per unit head velocity (E/VH), the 
input current per unit head velocity (I/VH), and the input electric field per unit head velocity (s/VH) as 
functions of frequency using Eqs. (5.10), (5.16), and (4.8.1), respectively. The frequency band considered 
covers from 5,000 to 15,000 Hz. Plots of the magnitudes and phases of these quantities over this band 
are given in Figs. B.l-1, B.l-2, B.l-3, B.l-4, and B.l-5. It can be easily seen from the IE/VHI versus 
frequency plot (Fig. B.l-1), that the in-water resonance frequency, coe, is located at approximately 7,500 
Hz. From the phase data given in Fig. B.l-2, notice that the in-water phase zero crossing frequency, coe0, 
also occurs at 7,500 Hz. (This expected behavior is discussed in detail in Sec. 5.2.2.2.) Similar 
conclusions can be drawn when one examines the magnitude and phase plots of I/VH versus frequency, 
as shown in Figs. B.l-3 and B.l-4, respectively. The anti-resonance frequency occurs at approximately 
9,500 Hz, the point where II/VHI is minimum and the phase angle between I and VH is 90°; i.e., roi90. 
Using a very conservative value for the electric field of 2 V/mil applied to the transducer's ceramic stack 
assembly (much higher fields may be applied in practice), specific values for the resulting head velocity 
(VH), radiated acoustic power (P), and the electrical power input (Pin) are calculated over the frequency 
range of interest. The graphs of the magnitudes of VH and P versus frequency are shown in Figs. B.1.6 
and B.1.7, respectively. The graphs showing Pin and the phase between E and I over the frequency band 
of interest are provided in Fig. B.l-8 and Fig. B.l-9. 

Each of these results for the modeled TR-330A transducer compared very well qualitatively (which 
is all that is required for our purposes), and surprisingly well quantitatively with actual TR-330A data, 
thus providing a good measure of verification for the simplified guidance model developed in Sec. 5. It 
must be mentioned, however, that the results are limited due to the fact that the flexing head and 
mechanical losses in the molded rubber around the head, found in the actual TR-330A transducer, have 
not been accounted for in the model. Nevertheless, much design insight can still be acquired. In the 
following subsections, we will build upon this simplified model, and investigate the effects of changing 
certain parameters such as the head mass and tail mass on the transducer's performance. 

B.2    THE IN-WATER SGM RESULTS OF THE STR-330A TONPILZ TRANSDUCER MODEL: 
VARIABLE m„, FIXED mT AND coM 

The next illustration exhibits the in-water transducer performance as the head mass, mH, is varied, but 
holding the tail mass, mT, and the in-air resonance angular frequency, com, fixed.  In Sec. 5.2.2.1.2, it is 
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stated that the in-water |E/VH| at w=wm [Eq. (5.12)] can be expressed more concisely in Eq. (5.34) 
(shown below) as 

1 „   i 

V* <&1<hj*H 

This form of |E/VH| claims that if the in-air resonance frequency <om is held constant, then as mH 

increases, the voltage E required to obtain a given head velocity VH decreases around wm. Since at first 
this conclusion seemed to violate experience gained using sophisticated computer models, it was important 
to determine if the same conclusion would be drawn by directly evaluating the more general relationship 
for |E/VH| given by Eq. (5.12) under the same conditions. This was accomplished by solving for <o* 
in the following form [Eq. (5.24)]: 

2 1(1     +     l) 
Ce[mH     mTj 

Using the baseline parameters for Ce, mT and mH, this calculation results in an in-air resonance frequency 
occurring at approximately 8,100 Hz. This frequency becomes the baseline in-air resonance frequency 
wm for the model. With this same relationship the effective compliance Ce may be changed such that for 
any variation of mH, the in-air resonance frequency remains fixed. It can be readily seen from Eq. (5.24) 
that as mH is increased, Ce must be decreased to maintain this condition. The |E/VH| in Eq. (5.12) may 
now be numerically evaluated for the baseline head mass (mH), a 10% larger head mass (mH+10%), and 
a 10% smaller head mass (mH-10%). 

Figure B.2-1 shows the computed values of |E/VH| as a function of frequency for each different mH. 
It can be readily seen that the results implied by Eq. (5.34) are, in fact, confirmed; i.e., the larger mH the 
lower the required E to produce a given VH around wm. It may also be pointed out that the in-water 
resonance frequencies for the three cases of mH vary slightly. Figure B.2.2 shows the phase of E/VH over 
the same frequency band. Since the electric field e = E/lc, the values of |e/VH| for each mH versus 
frequency, shown in Fig. B.2-3, have the same shape as the curves found in Fig. B.2-1. Using each mH 

and the corresponding Ce required to maintain a fixed value of (i)m, the amplitude and phase of I/VH are 
also determined and illustrated in Figs. B.2-4 and B.2-5. For an applied electric field of 78,740 V/m (or 
equivalently 2 V/mil), the complex electrical quantities E, I, Ze, and Pin are also calculated. Plots of |I |, 
|E|»|I| product, and Pin are given in Figs. B.2-6, B.2-7, and B.2-8, respectively. As seen in Fig. B.2-8, 
the increased mH results in an increased input electrical power around resonance. 

B.3    THE IN-WATER SGM RESULTS OF THE STR-330A TONPILZ TRANSDUCER MODEL: 
VARIABLE mH, FIXED mT AND <ae 

In an analysis similar to the one described in the previous section, this subsection attempts to further 
illustrate the effects of changing the transducer head mass mH on the transducer performance. (See Sec. 
5.2.2.5.) The only difference being that in this case the in-water resonance frequency ue shall be held 
fixed, instead of the in-air resonance frequency Qm. Following the derivation presented in Sec. A. 10, we 
find that the in-water resonance frequency <oe for the quantities |E/VH| and |e/VH| is given by 
Eq. (5.76) 
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•1 r2 + (m + mT)2 

ce \   mj(ra + m2) 

Using the same procedure as described in the fixed (i)m case, along with Eq. (5.76), we determine that 
the effective compliance Ce must be decreased when mH is increased in order to maintain the fixed <oe 

condition. E/VH was computed for each of the following three values for the head mass: mH, mH+10%, 
and mH-10%. The magnitude and phase of E/VH for these cases are graphically illustrated in Figs. B.3-1 
and B.3-2, while |e/VH | is shown in Fig. B.3-3. Similar trends are seen as in the fixed <om case; namely, 
that as mH is increased, E/VH (or equivalently e/VH) decreases around the resonance frequency (0e. For 
this fixed we case it may be observed in Figs. B.3-1 and B.3-3 that away from resonance there is a slight 
reduction in the bandwidth as a result of increasing mH. This trend should become more obvious as mH 

continues to deviate from the baseline value. These graphs also illustrate that there are two particular 
frequencies, one below oe (« 6,000 Hz) and the other above we(« 9,300 Hz), at which all three curves 
for mH intersect. As we will see in more detail in the next subsection, this candidate application of the 
SGM added some additional insight into the insight oriented design aids presented in Sec. 5. It is 
interesting to note that if this phenomenon had been observed when the original insight-oriented analyses 
were done, it could have facilitated the development the Fixed End Point Analysis of Sec. 5.2.2.6.2 which 
is illustrated in the third candidate application of the SGM in Sec. B.5. 

Other pertinent transducer performance quantities such as |I/VH|, phase of I/VH, |I|, |Z„|, phase 
of Z0, |E|»|I| product, and Pin, using the applied electric field of 2 V/mil are illustrated for each mH 

as a function of frequency in Figs. B.3-4 through B.3-10, respectively. As in the case of fixed wm, the 
input electrical power Pin required by the transducer around resonance increased with mH. 

B.4    THE IN-WATER SGM RESULTS OF THE STR-330A TONPILZ TRANSDUCER MODEL: 
FIXED END POINT ANALYSIS, SPECIAL CASE 2 

In this subsection we will attempt to illustrate one of the most important conclusions drawn by the 
augmented simplified guidance model analysis. Hopefully, it will result in more insight for the transducer 
designer. In the Fixed End Point Analysis (FEPA) (See Sees. 5.2.2.6.2 and A. 13), the lower and upper 
end points of the frequency band of interest, <oL and (Ou, are held fixed. Additionally, design constraints 
are placed on the values of <oe and the |e/VH| at the end point frequencies. As given by Eq. (5.93), we 

is constrained to be located between the lower and upper end point frequencies, <oL and <au. The 
constraint on |e/VH| in the FEPA depends on the specific case of interest. In Sec. 5, two of these cases 
are discussed in detail:  Special Case 1 and Special Case 2. 

Special Case 1 uses the value of Ce from Eq. (5.104) for the case where a = 1 in Eq. (5.108). Special 
Case 2 imposes the design constraint that the |e/VH| must be equal at the lower and upper end points, 
<oL and Uu. Both of these special cases provide useful insights to the designer, however, only Special 
Case 2 will be graphically illustrated here. For convenience, we repeat the design constraint given by 
Eq. (5.126), 

B ».!=/.*_ B 
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This relationship causes the a parameter defined in Eq. (5..108) to be Eq. (5.127) below 

a = —. 
COy 

It is the intention of this candidate application of the SGM to verify the trends pointed out by the 
insight oriented derivations contained in the FEPA in Sec. 5 and Appendix A. The FEPA provides insight 
into a method to select best choices for mH and mT, while automatically finding a best location for coe. 
In this illustration, we will be using an iterative approach. The purpose of using this iterative approach 
as opposed to directly implementing a few of the insight oriented analytical expressions derived in Sec. 
5.2.2.6.2.1.2 is to show that the SGM may provide satisfactory results with primarily the use of the 
transducer designer's insight. (In practice, however, the procedure can be automated with a computer 
program to do this much more efficiently.) The same procedure can be used as a TDGS in conjunction 
with a full-scale computer model. The transducer performance calculations employed in the following 
analysis will be the same general expressions utilized in previous subsections of this Appendix. The 
analysis encompases all the necessary design principles discussed in Sees. 4 and 5. In other words, it 
demonstrates how the designer should modify the necessary transducer parameters (components) to meet 
the overall transducer performance objectives. 

In the first Case 2 example, we will look at the situation where mH is varied, but mT is held fixed. 
In addition to the Case 2 design constraint given by Eq. (5.126), we will insure that the I s/VH | at the 
end points for each mH is the same as the I e/VH | at the end points using the baseline mH. Five different 
values of the head mass are tested in the FEPA. They include mH (the baseline value), mH+10%, mH-10%, 
mH+20%, and mH-20%. Initially, let's analyze the inherent effect of changing mH; i.e., before application 
of the FEPA, on the numerical model's calculation of I s/VH | [Eq. (5.16)]. This is shown in Fig. B.4.1. 
As expected, I s/VH I varies considerably over the 5,000 to 11,100 Hz band. The resonance frequency 
also shifts as mH is varied. These results demonstrate that considerable changes occur in the transducer's 
performance; thereby, demonstrating the need to implement a procedure to compensate for these 
differences in I e/VH | at the frequency end points. Next we will apply the FEPA which serves as a 
systematic procedure for adjusting these parameters to meet the imposed design constraints. It can be 
summarized as follows: 

1. Apply Eq. (5.16) to the baseline transducer model over the frequency band, and choose the fixed 
end point frequencies coL and cou such that I e/VH | b at co = coL is equal to I s/VH | b at <x> = coU5 

where I e/VH | b is defined as the baseline electric field per unit head velocity. 

2. Modify the value of mH in the model, and recompute I s/VH I as a function of frequency and 
compare I s/VH I  at coL and coy . 

3. Make iterative modifications to the effective compliance Ce such that | s/VH I at co = ©L is equal 
to I e/VH |  at co = coy f°r tne nevv mH- 

4. Adjust the length of each ceramic ring (lc) in the CSA so that I e/VH I = I e/VH |b at the fixed 
end points coL and coLJ. 
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5.   Modify the area of each ceramic ring Ac according to 

A. 
U33 Li 

(c, - 9 
(B.4) 

which is determined using a combination of Eqs. (4.2a) and   (4.18). 

6. Finally, implement the new value for Ac into the transducer model and recompute | e/VH I. 

7. Repeat steps 2 through 6 for each new value of mH. 

The FEPA procedure was applied to the transducer using arbitrarily chosen lower and upper end 
points of 5,000 and 11,100 Hz, respectively. The I E/VH I results from the application of the FEPA for 
each case of mH are plotted over the frequency range in Fig. B.4-2. Note the dramatic improvement in 
the agreement of the curves for the various mH cases when compared to the curves illustrated in the 
"uncorrected" cases found in Fig. B.4-1. Additionally, after performing the FEPA the resonance 
frequencies <x>e for all the cases of mH now coincide. (This obtained identical results as the second 
candidate application shown in Sec. B.3 where coe was required to remain fixed.) In other words, if one 
completes the FEPA, then coe is automatically adjusted to the desired location. It is demonstrated once 
again that the larger mH the lower the electric field required to produce a desired source level or head 
velocity around resonance. It also demonstrates that the smaller mH the flatter the frequency response of 
the transducer. Consequently, the size of the head mass the designer chooses depends on the specific 
transducer performance requirements. If we choose flatness as a goodness criteria, then we would want 
to choose a smaller mH in our transducer design. Table B.l provides the tabulated values for C„, L, Ac, 
and L/Ac required to complete the FEPA. 

Table B.l   -  Example of Fixed End Point Analysis:   Case 2 Variation of mH; mT Held Fixed 

Head Mass Ccxl0
8 (m/N) l,(m) Mm) Ac (m

2) L/Ac (1/m) 

mH 0.093012 0.01090 0.04360 0.000886 49.2 

mH + 10% 0.088733 0.01099 0.04396 0.000947 46.4 

mH - 10% 0.097941 0.01060 0.04240 0.000809 52.3 

mH + 20% 0.085357 0.01130 0.04520 0.001021 44.2 

mH - 20% 0.104303 0.01055 0.04220 0.000747 56.5 

We can see from this data that as the head mass increases the effective compliance must decrease, and 
the ceramic stack length must increase. Other pertinent transducer performance quantities of interest such 

I I II l   l    l     l 1    1   1   1 as IE/VHI, phase of E/VH, II/VH 1, phase of I/VH, 111, I Ze I, phase of Ze, | E | • 111 product, and Pin, 
using an applied electric field of 2 V/mil, are illustrated for each mH in Figs. B.4-3 through B.4-11, 
respectively. Note that there is also close agreement in the antiresonance frequency for each case of mH 

from the input current magnitude per unit head velocity (I I/VH |) found in Fig. B.4-5. 

In the second Case 2 example, we will look at the situation where mT is varied, but mH is held fixed. 
Our goal is now to insure that the I E/VH | at coL and u>u for each mT is the same as the Ie/VH| b at oL 
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and cou using the baseline mT. This application of the FEPA is analogous to the procedure in the first 
example discussed above. Before applying the FEPA, let's consider what ordinarily happens to | s/VH | 
as mT is changed. (See Fig. B.4-12.) As expected, I s/VH | varies considerably over the 5,000 to 11,100 
Hz band. The resonance frequency is also shifted. Next, we will illustrate in Fig. B.4-13 the results 
obtained after applying the FEPA to the transducer. Note the improved agreement in | e/VH I at coL and 
cou, as well as the location of ©„. This figure also demonstrates the trend that larger tail masses give 
larger | e/VH I values at coe and flatten the frequency response. (Refer to Sec. 5.2.2.6.2.1.2 for a detailed 
analysis of why this behavior is expected.) However, the differences in | e/VH | seen here are much less 
than those differences seen as mH is varied. Table B.2 provides the tabulated values for Ce, L, Ac, and 
L/Ac required to complete the FEPA. 

Table B.2   -  Example of Fixed End Point Analysis:   Case 2 Variation of mT; mH Held Fixed 

Tail Mass Cexl0
8 (m/N) Um) Mm) Ac (m*) L/Ac (1/m) 

mT 0.093012 0.01090 0.04360 0.886740 49.2 

mT + 10% 0.090407 0.01062 0.04248 0.894526 47.5 

mT - 10% 0.096267 0.01125 0.04500 0.877718 51.3 

mT + 20% 0.088361 0.01042 0.04168 0.902777 46.2 

mT - 20% 0.100452 0.01172 0.04688 0.868636 54.0 

It is readily seen from the data that as mT is increased, Ce and L must decrease to meet the electric field 
end point requirements. The trend for Ce to decrease with increasing mT is predicted by Eq. (5.104c) in 
the main text. The decrease in L is expected assuming that the following condition [Eq. (5.137) below] 
holds: 

2L 

N 

l + 
(r2 + w* Y 

+ m 
w. 

This is the condition for which the slope of L with respect to mT is negative.  If one performs a similar 
derivation to the one required to obtain Eq. (5.138b), it logically follows from Eq. (5.137) that 

r < m 
\ 

'V 1. (B.5) 

In order to meet this condition for our TR-330A transducer, where m = mH + x = 0.6633 and the 
frequency end points are 5,000 and 11,100 Hz, then 

r < 1.3147. (B.6) 

Since in our case r = 0.2447 (found using the radiation impedance model of a baffled piston), this 
condition has indeed been met.  Therefore, we conclude that our example fits into the broad-band design 
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and the trend suggested by the augmented SGM is in good agreement with the computational results. 
In fact, Eq. (B.3) suggests that the ceramic stack length L should continue the trend to decrease with 
increasing mT until co,j/coL = 1.07, the point at which L would start increasing with increasing mT. That 
case would be considered a very narrow band transducer design. However, in practice the broad-band 
design is the most common type encountered. 

In order to complete our characterization of the transducer upon application of the FEPA Special Case 
2, other transducer performance calculations are included for the case where mT is varied. Illustrated in 
Figs. E-.4-14 through B.4-22 are I E/VHI, phase of E/VH, | I/V„ I, phase of I/V„, 111, I Ze |, phase of Z„ 
IEI • 111 product, and Pin using the typical applied electric field of 2 V/mil. 
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Fig. B.l-1 — STR-330A Model's in-water |E/VH| versus frequency 
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Fig. B.l-7 — STR-330A Model's in-water acoustic power output versus frequency; e = 2V/mil 
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Fig. B.4-14 — STR-330A Model Results After Application of FEPA Case 2:   In-water | E/VH| versus frequency for various ny, 
fixed «L, Wu, and mH 

80 

60-- 

40- 

20- 

■a 

0-- 

-20 

-40 

-60 

-80 

-100 

 1—   -   I           I           I           1 i            i 

 mT 
-- mT+10% 
 mT-10% 

•     mT+20% 
  mT-20% 

... 

if-lower = 5000 Hz, f-upper =11,100 Hz. ;  

-^^- 
/ 

!            I            !            i            i  ' 

... 

0.5        0.6        0.7        0.8 0.9 1 1.1 
Frequency (Hz) 

1.2        1.3 1.4        1.5 

X104 

Fig. B.4-15 — STR-330A Model Results After Application of FEPA Case 2: In-water phase of E/VH versus frequency for 
various mT; fixed wL, uD, and mH 



Transducer Design and Analysis 179 

8- 

7- 

I 
o 
<D 4 ■ 
■D 

1 

i           i I ■           i           i 

 mT 
-- mT+10% 
 mT-10% 

•     mT+20% 
  mT-20% 

■             :             :    .#' 

: Mower = 

::::::  M-'   ': 
■M.- 

= 5000 Hz, f-upper = 11,1:00 Hz   I                      M' 

i W\      i 
:             :             :             :             : .*?• 

 ! i i \"W i      !  

i 

i 

0.5        0.6        0.7        0.8        0.9 1 1.1 1.2        1.3        1.4        1.5 
Frequency (Hz) x104 

Fig. B.4-16 — STR-330A Model Results After Application of FEPA Case 2: In-water |I/VH| versus frequency for various raj.; 

160r 

140- 

120 

.100- 

Z   60- 

40-- 

20 

-20 

I           I           I           1           1           1           1           1           1 

 mT 
- - mT+10% 
 mT-10% 

•     mT+20% 
  mT-20% 

- I     :•# : !  •-■: - 

M; 

:             :.«?■:             :             :                          :             : :                          \M-     :::::: 

-xje^*^^                       '■ Mower == 5000 Hz, f-upper = 11 ,T00 Hz   : 

i                 i                 i                 i                 i                 i                 i                 i                 i 
0.5        0.6        0.7        0.8        0.9 1.1 1.2        1.3        1.4        1.5 

Frequency (Hz) x10 

Fig. B .4-17 — STR-330A Model Results After AppEcation of FEPA Case 2: In-water phase of I/VH versus frequency for 
various mT; fixed wL, u>v, and mH 



180 Carson and Waiden 

0.4 

0.35-■ 

0.3- 

0.25 

0.2 

to.15r 

0.1 

0.05 - ■ 

1 I             I             I       I -  1                   1 

 mT 
-- mT+10% 
 mT-10% 

•     mT+20% 
  mT-20% 

■- 

\   f-löwer = 5000Hz,f-upper=i11,100;Hz       ; 

\           ■           =    j^ 
igjjS^^^ 

•T^^^^^l.'' 

i 1                   I                   I                   I                   I                   I 

0.5        0.6        0.7        0.8        0.9 1 1.1 1.2        1.3        1.4        1.5 
Frequency (Hz) x10 

Fig. B.4-18 — STR-330A Model Results After Application of FEPA Case 2: In-water |I| versus frequency for various mT; fixed 
o>L, Wp, and mH 

16000 

14000 ■ 

12000 

E 10000 

N 
•S    8000 ■ 

6000 & 

4000- 

2000- 

I           I I           I           I           I           I           1           I 

-■ 

 mT 
- - mT+10% 
 mT-10% 

•     mT+20% 
  mT-20%  : U//,.^\* : :  

W   \  \xV-\i 

 ,■/*•.: : ,%^- X,; *. . ■.:-. : - 

i-.          : J          '■ Mower i= 5000 Hz, f-upper = 11,100 Hz   : 

' i            !            !            i            I            i            i 
0.5        0.6        0.7        0.8        0.9 1 1.1 1.2 1.3 1.4        1.5 

Frequency (Hz) x10 

Fig. B.4-19 — STR-330A Model Results After Application of FEPA Case 2: In-water | ZJ versus frequency for various r%; 
fixed uL, coU7 and mH 
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Fig. B .4-20 — STR-330A Model Results After Application of FEPA Case 2: In-water phase of Ze versus frequency for various 
mT; fixed uL, u>v, and mH 
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Fig. B.4-21 — STR-330A Model Results After Application of FEPA Case 2: In-water |E|»|I| product versus frequency for 
various rrij.; fixed uL, u,,, and 1% 
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Fig. B.4-22 — STR-330A Model Results After Application of FEPA Case 2: In-water electrical power input versus frequency 
for various mT; fixed coL, «u, and mH 


